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Abstract. In this paper, we give a new branch and bound algorithm for the global optimization 
problem with bound constraints. The algorithm is based on the use of inclusion functions. The 
bounds calculated for the global minimum value are proved to be correct, all rounding errors are 
rigorously estimated. Our scheme attempts to exclude most '~uninteresting" parts of the search domain 
and concentrates on its "promising" subsets. This is done as fast as possible (by involving local descent 
methods), and uses little information as possible (no derivatives are required). Numerical results for 
many well-known problems as well as some comparisons with other methods are given. 
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1. Introduction 

Global optimization is calculating the global opt imum of  an objective function over 
a set of  feasible points. In this paper we consider the following global optimization 
problem 

M i n { f ( x )  x E X } ,  X : = { x E I R ' Z [ X < x < _ - X } ,  (1) 

where f : X --+ IR, and the set o f  feasible points X is a box or interval vector with 
X < X ,  < is to be understood componentwise.  The global minimum (if it exists) 
is denoted by f*  :=  Min{ f ( x )  I z E X }, and the set of  global minimum points is 
denoted by 

x *  := { ~* ~ x I f(~*) = y* }. (2) 

During the last two decades several methods have been developed for solving 
global optimization problems. Branch and bound schemes have been recognized 
as deterministic methods that calculate bounds for f*  and/or X*.  Their  main 
components  are (i) techniques for partitioning the set of  feasible points X into 
subregions Y, (ii) the calculation of  bounds for the range of  f on those subregions, 
and (iii) techniques to discard some of  the subregions. 
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One of the most important aspects of those methods is the calculation of bounds 
for the range of functions. To our knowledge, Moore [21] was the first to discover 
that interval arithmetic allows computing rigorous bounds for the range of a func- 
tion over a box X, where the function is given by an arithmetical expression. Based 
on this results a branch and bound strategy with some of Moore's principles was 
given by Skelboe [34] and improved by Moore [22]. Important modifications of 
Moore's method for solving the global optimization problem are due to Hansen [8], 
[9], [10]. Especially, he gives substantial attention to problems where additionally 
rigorous bounds for the range of the first and second derivative are available, and 
proposed improved versions using interval Newton methods, monotonicity tests, 
and nonconvexity tests. A detailed convergence analysis of those methods was 
first given by Ratschek [28]. A special method for solving Minimax Problems by 
using interval arithmetic can be found in [33]. Two excellent treatments of how to 
apply interval methods to nonlinear systems and of global optimization problems 
are given by Ratschek & Rokne [30] and Hansen [ 10]. These books contain many 
references which are related to interval arithmetic, nonlinear systems, and global 
optimization. For other branch and bound methods, not using interval arithmetic, 
the reader is referred to [11], [27], [35]. 

The components (i) and (iii) of a branch and bound method have important 
influence on the efficiency and the storage requirements. A common technique for 
discarding subregions is the following: a subregion Y contains no global minimum 
point and can be discarded, if a point z E X is known such that the calculated 
lower bound of f on a subregion Y of X is greater than f (z). Hence, for discarding 
subregions and accelerating branch and bound schemes it would be best if f* would 
be known at the very beginning. 

In contrast to other branch and bound techniques described in the literature 
mentioned above, the goal of our paper is to consider a branch and bound algorithm 
which incorporates local optimization algorithms for computing approximations of 
f* and X* at the very beginning. There are two important difficulties by using local 
optimization algorithms for global optimization problems. First, local optimization 
algorithms rely heavily on the starting point, and the region of attraction for a global 
minimum point or a stationary point may be very small. Secondly, it is difficult 
when to call a local optimization algorithm in a global optimization method. Ideally, 
the local optimization algorithm should only be called when an approximation of 
a global minimum point will actually be computed. 

In our method we use inclusion functions which give rigorous bounds for the 
range of values of functions. One way to obtain inclusion functions is to use the 
tools of interval arithmetic, where rounding errors can rigorously be estimated. For 
example, functions which are given by arithmetic expressions, and which addition- 
ally may involve standard functions, an inclusion function easily can be obtained 
in the following way: The variables, real operations, and standard functions are 
replaced by interval variables, real interval operations, and interval standard func- 
tions, respectively. In the last two decades, methods for calculating inclusion func- 



A BRANCH AND BOUND ALGORITHM 299 

tions are given for many problems, like linear and nonlinear equations, eigenvalue 
problems, differential equations, integral equations, etc. If the objective function 
is implicitely defined by such a problem, we may calculate with those methods a 
corresponding inclusion function. On the other hand, our method cannot be applied 
to problems where bounds for the range of the objective function are not available; 
for example, functions which are computed by complex routines that only calculate 
function evaluations at trial points. 

We assume that the reader is familiar with the elementary concepts of interval 
arithmetic. These concepts and their applications are described in the monographs 
Alefeld & Herzberger [1], Kulisch & Miranker [19], Moore[23], Neumaier [26], 
and Ratschek & Rokne [29]. These books contain many examples. 

In our scheme, we use inclusion functions for calculating bounds for the range 
on subregions, and also for incorporating local optimization algorithms, In many 
experiments we observed that usually inclusion functions overestimate the true 
range of the objective function, but they have the following property: if lower 
bounds of f on two subboxes with equal diameter are calculated, then in many 
cases the subbox with the smaller lower bound contains smaller function values. 
Our branch and bound scheme is motivated by this observation. This scheme 
improves starting points for the local optimization algorithm and attempts to avoid 
the difficulties mentioned above. 

Our method calculates approximations and guaranteed bounds of the global 
minimum value and the global minimum points. The bounds calculated for the 
global minimum points are rough compared to the bounds for the global mini- 
mum value. Neither derivatives of the objective function nor derivatives of the 
corresponding inclusion function are required. 

The paper is organized as follows. Section 2 describes our branch and bound 
method for solving the bound constrained optimization problem. In Section 3 a 
detailed convergence analysis of the method is given. Section 4 contains numerical 
results of 22 test problems, and in Section 5 some conclusions are given. We 
mention that our method is faster than many other well-known methods for the set 
of test functions proposed by Dixon and Szeg6 [6] (cf. Section 5). Numerical results 
for one-dimensional test problems of a one-dimensional version of the method 
described can be found in Jansson [ 12], [13]; more results for other problems are 
given in Jansson and Kntippel [14]. 

2. The Method 

In this section we present the minimization method in detail. Roughly speaking, it 
is a special branch and bound technique consisting of a repeated application of a 
bisection strategy in connection with a descent algorithm. The method consists of 
three algorithms. The first algorithm called "MINIMIZATION" implements a part 
of our branching strategy by calling the second algorithm "SUBDIVISION". The 
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latter determines a bisection process, discards subregions, improves starting points, 
and calls the third algorithm "SEARCH", which involves the descent algorithm. 

We use the following notations. The bounds X__, X of a box X := { x E IR ~ I 
X < x < X }  are called lower and upper bound of X. With I (X )  and I(IR n) we 
denote the set of all boxes contained in X and IR n, resp. The midpoint of a box X 
is given by 

re(X) := 0.5. (X + X) ,  (3) 

the width of X is defined by ~ 

w(X)  := X - X___, (4) 

( with components and the relative width is the vector wrel(X) ZOrel ( X i  i= l  

w(Xi) / Im(Xi) l  if 0 ~ Xi 
Wrel(Xi) := w(Xi)  otherwise (5) 

where Xi denotes the i-th component of X. The interval hull of a set Z c_ IR n is 
defined by 

u ( Z )  := ~') { Y e I(IR ~) I Z C_ Y }. (6) 

The distance of two boxes X, Y E I(IR n) is defined by (cf. [30], page 78) 

d(X, Y)  := max{ do(X, Y) ,  d0(Y, X) } (7) 

where do(x,Y) := minllx -YI[,  do(X,Y)  := max do(z, Y), and I1" II denotes 
yEY xEX 

some norm. A sequence of boxes (X k) with X k E I ( ~  ~) converges to x E X if 
lim d(X k, x) = O. In this case we use the abbreviation X k ~ x. 

For a function f : X -~ IR the range of f on a box Y C X is denoted 
by R ( f ( Y ) )  := { f ( y )  I Y e Y}. A function F �9 I (X)  ~ I(lR) is called an 
inclusion function of f on X,  if 

R ( f ( Y ) )  C_ F ( Y )  = [F(Y) , f f (Y)]  forall Y E I (Z ) .  (8) 

For the remainder of the paper we assume that an inclusion function F o f f  on X 
is given, and nit, na E IN \ {0}. 

The two parameters nit, nd of the method are responsible for the number of 
iterations and the number of bisections in each iteration step, respectively. 

During the initialization (8.1), (8.2), (8.3) of MINIMIZATION the guaranteed 
lower and upper bounds F__.* and if* are set to - c ~  and c~. List S holds the original 
box X in which we search for the global minimum, and F__.(X) := -c~ .  List A will 
contain the approximations to be calculated and is empty at the beginning. 

The bounds F_*, if* and the lists S, A are global quantities w.r.t, all three 
procedures. 
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By passing through steps (8.4) to (8.11) at most nit iterations are executed. In 
each iteration step i = 1 , . . . ,  nit SUBDIVISION is applied to all pairs contained 
in list S at the beginning of the iteration step. Later on, we will see that list S 
maintains the property 

x* c (_J { r l(r, F(Y))  E S }. (9) 

Hence, in formula (8.10) F* is updated and satisfies F* < f*. Formula (8.11) 
provides an additional termination criterion. The algorithm terminates if the lower 
and upper bound of f* are close enough, or if nit iterations are executed. 

procedure MINIMIZATION; 
begin y1 : :  X, F* := -oo ,  if* := oo, F__(Y 1) := F*; (8.1) 

initialize list S := { (Y1, F__(Y1))}, (8.2) 

list of boxes containing all global minimum points; 
initialize list A := 0, (8.3) 

list of approximations to be calculated; 
for i = 1 , . . . ,  nit do (8.4) 
begin 

S' := S; (8.5) 
S := O; (8.6) 
for all pairs (YJ, F__(YJ)) E S' do (8.7) 
begin 

call SUBDIVISION for the pair (YJ,_F(YJ)); (8.8) 
SUBDIVISION produces a list L that consists of pairs (Z, F (Z) ) ;  
append list L calculated by SUBDIVISION (8.9) 
at the end of list S; 

end; 

:= Max{ - F__*,Min{F__(Y) I(Y,F__(Y)) E S }}; (8.10) __F* 

if (if* - F*) < e then STOP (8.11) 
end; 

end; 

The heart of our minimization method is SUBDIVISION (cf. (9.1) . . .  (9.15)). It is 
assumed that (i) a pair (II, F(Y))  with Y C_ X, (ii) a guaranteed upper bound if* 
of f*, and (iii) a permutation vector p : {1 , . . . ,  n} --+ {1 , . . . ,  n} are given. The 
permutation vector p determines in which direction the boxes are bisected. In all 
examples discussed in Section 5 p is choosen such that w(Xp(i)) > w(Xp(j)) for 
i < j ,  i.e., first the box is bisected normal to the direction with the largest width, 
then normal to the direction with the second largest width and so on. 

In (9.1) kmax determines the maximal number of bisections which are performed 
in SUBDIVISION. It can be seen that the maximal length of list W equals krnax. 
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The number k(Y) determines the next direction of bisecting (cf. (9.8), (9.9)). The 
initialization k(Y) := 0 in (9.2) says that the starting box Y is bisected normal to 
p(1), since in this case s := (k(Y) mod n) + 1 = 1. Hence, the starting box Y 
will be bisected normal to the direction with largest width of Y. Then in (9.3) a 
"working list" W containing the pair (Y, F__(Y)) together with k(Y) and list L := 0 
are initialized. 

Our scheme excludes most "uninteresting" parts of the search domain and 
concentrates on its "promising" subsets, and this should be done as fast as possible. 
Our experience is that if a box Y is bisected with Y = y1 tO y2 and w(Y 1) = 
w(y2) ,  then in many cases the part yi with the smaller lower bound F__(Y i) 
(i = 1, 2) will contain the global minimizer of f on Y. Passing through steps (9.4) 
to (9.15) we see that the algorithms proceeds always bisecting with box Y~ with 
the smaller lower bound (cf. (9.11), (9.12)), while it enters the box with the greater 
lower bound at the end of the working list W (cf. (9.13)). Thus, ]r bisections 
are executed on the original box Y, and then SEARCH is called in (9.14). The 
advantages of proceeding in this way are: 

- The starting point of the descent method is improved by reducing the width 
of Y with the above heuristic: choose always the box with the smaller lower 
bound. 

- The guaranteed upper bound if*, which excludes the uninteresting parts of Y 
in (9.7), (9.13), and (9.15), is quickly updated in (10.7). Notice that in (9.13), 
(9.15) boxes are no longer taken into consideration if ff_(YJ) > -if*. 

After calling SEARCH, the remaining boxes on list W are bisected. Only 
the boxes Y(J) which may contain global minimizers (i.e, F__(Y ~) < if*) are 
entered in a "local solution" list L (cf. (9.15)). List L is given back to algorithm 
MINIMIZATION in (8.9). 

procedure SUBDIVISION; 
Given a pair (Y, F(Y))  and a permutation p : {1, . . . ,  n} -+ {1 , . . . ,  n}. 

begin 
kmax :----- n �9 r id;  

k(Y) := O; 

initialize list W := { (Y, F__(Y), k(Y)) } and list L := 1~; 

while W r 0 do 
begin 

remove last triple (Y, F__(Y), k(Y)) from W; 
for k = (k(Y) + 1) , . . . ,  kma x do 
begin 

if F(Y) > if* then exit for loop 
s := (k mod n) + l; 
bisect Y normal to direction p(s) getting two boxes 

(9.1) 
(9.2) 

(9.3) 

(9.4) 

(9.5) 
(9.6) 

(9.7) 
(9.8) 
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y1,  y2  with y1 U y2  ___ y ;  (9.9) 
calculate E_(y1), F(Y2);  (9.10) 
if F__(Y 1) > F ( Y  2) then 

exchange the indices of (Y1, F(YI) ) ,  ( y 2 , F ( y 2 ) )  ; (9.11) 
g := y1; F (Y)  := F ( y I ) ;  (9.12) 
if k < kmax and F__(Y 2) _< if* then 

enter the triple (y2, F ( y 2 ) ,  k) at the end of W; (9.13) 
if k = kmax and L = • and F_(Y) _< if* then 

call SEARCH for (Y, F ( Y ) ) ;  (9.14) 
f o r j  = 1 , 2 d o  

if k = kmax and F_(YJ) <_ if* then 
append (YJ, F__(YJ)) at the end of list L; (9.15) 

end; 
end; 

end; 

A key problem is deciding of when to call the descent algorithm. Obviously, 
if each call of SUBDIVISION would imply a call of the descent algorithm the 
computational costs may grow dramatically. Ideally, a descent method should be 
called, only if a global minimum point can indeed be calculated. This is the task 
of SEARCH. By (10.1), (10.2), we first calculate an approximation of f~ := 
f (mid(Y) ) ,  and then call the descent algorithm in (10.4), if (10.3a) or (10.3b) is 
satisfied. 

The box H(.~) is computed in (10.8) by means of an expansion around a local 
or global minimizer. Notice that for 8 := 0 the descent algorithm is called only 
if (10.3a) is fulfilled; in this case the descent method will surely improve if* 
by (10.7). In our experience, using only (10.3a) has the disadvantage that many 
bisections have to be performed in situations where the first call of the descent 
algorithm delivers only a local minimum. This is, because the next call of the 
descent algorithm needs the midpoint of a box possessing a better value of the 
objective function than the previously calculated local minimum. Therefore, for 
the purpose of acceleration we additionally use condition (10.3b) with 8 > 0. 
Notice that for boxes Y inside of the expansion boxes H(~)  the descent algorithm 
will only be called if condition (10.3a) is satisfied. The incorporation of expansion 
boxes are necessary for our method; otherwise, by condition (10.3b) the descent 
method would be called too many times, if the function f is very flat locally. 

We emphasize that, in almost all of our test examples, the number of calls of 
the descent algorithm is equal to the number of global minimum points or at most 
threefold this number. 

In (10.6), on a computer it is important to calculate the value ff(s using the 
upper bound F of our inclusion function F with proper rounding. Then we know 
undoubtedly that if(Y) is a guaranteed upper bound of f (~) and therefore we cannot 
loose any global minimum points due to rounding errors. All other calculations in 
SEARCH are executed on a computer by using floating-point arithmetic. 
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procedure SEARCH; 
Given a pair (Y, F_(Y)) and a, 13, % 5 _> 0; 
begin 

xs := mid(Y); 
fs := f(xs); 
if fs < if* or 
if Y N H(5)  = 0 for each already calculated approximate 

local or global minimum point stored in our 
approximation list A and fs < if* + 5. IF*I then 

begin 
call a descent method with starting point xs 
calculating an approximation 5; 
if ~" ~ X then project 5 orthogonal onto the bound of X, i.e. 

if ~i < Xi ,  then xi := X____~: 
if ~'i > Xi ,  then ~i := X,: 
if -~i E [X__ i, Xi], then ~'i is not changed. 

/:= 
if* := min{3~ff*}; 
H(.~) := ~" 4- a .  Max{IS- xsI, ;~l~l,'y); 
append the triple (.~, f ,  H(5))  at the end of list A; 

end; 
end; 

(10.1) 
(10.2) 

(10.3a) 

(10.3b) 

(lO.4) 

(lO.5) 
(lO.6) 
(lO.7) 
(lO.8) 
(lO.9) 

REMARKS. 
1. In SUBDIVISION, step (9.11) gives a rule which says that the algorithm 

proceeds with the box possessing the smaller lower bound. In the rare case where 
both bounds are equal the algorithm proceeds with the first box. This case can be 
improved by inserting the following step after (9.10): 

if F__(Y l) = F__(Y 2) then bisect Y normal to direction p(s) yielding two boxes 
y I , y 2  with y1 U y2 = y such that w(Y  l) = 0.49 �9 w(Y); then calculate 
F ( r l ) ,  F__(Y2); 

This rule serves to accelerate our method especially, if a global minimum is 
close to or on the common boundary of y1 and y2. 

2. Usually we start with a given box X. But we can also begin with a set of 
boxes and/or a set of approximations and bounds F*, if*; we have only to change 
the initialization (8.1), (8.2), (8.3) in MINIMIZATION. Moreover, the method can 
be used in an interactive way. That is, if the precision is not good enough we can 
successively increase i by applying (8.5) to (8.11) to the lists S, A, and the updated 
bounds F_F*, if*. In Section 4, numerical results are given. These should be read in 
the form that nit is successively increased with fixed nd. 

Also by increasing i, the parameter nd might be changed in SUBDIVISION 
guided by the computed results (for example the length of list S of the previous 
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iteration steps). For many problems values of nd between 2 and 4 are satisfactory. 
Higher values of nd are suited, if the region of attraction is very small. 

Similarily, the parameter a, fl, "7, 8 and e may be changed interactively. Thus, 
we have a great flexibility in applying our method. 

Nevertheless for our numerical experiments in Section 4 the same set of param- 
eters has been choosen identical for all test problems, with values a := 0.2, 
/3 := 0.1, ~/:= 10 -3, 8 :-- 0.2, e := 0. This heuristic parameters are not optimized 
w.r.t, to the set of problems discussed here. For some problems we did obtain better 
results by changing some of the parameters. The setting e := 0 disables the termi- 
nation criterion (8.11) and, thus, allows us to show the behaviour of our method 
for increasing parameters nit, rid. 

3. Except for example 1, our implementation of the method uses the algorithm of 
Brent [3](cf. Chapter 7) as the local optimization method. For the non-differentiable 
test problems, special descent algorithms may give better results. In example 1 we 
used an SQP method, because this problem can also be viewed as a differentiable 
constrained optimization problem. 

4. Step (9.7) in SUBDIVISION is our mechanism for deleting subboxes. If more 
information about the problem is given, then additional criteria can be incorporat- 
ed, for example, monotonicity or concavity tests. Furthermore, knowing that the 
function f is concave on X permits us to discard boxes Y contained in the interior 
of X because here X* is on the boundary of X. 

3. Convergence 

In this section we discuss convergence properties of our method. To do this we 
need some additional notation. The calculated bounds F___*, if* depend mainly on 
the parameters nit, nd E IN, which determine the computational costs. In each 
iteration step i = 1 , . . . ,  nit (cf. (8.4)) of MINIMIZATION the lower bound F_if_* is 
updated in (8.10) whereas if* is updated in (10.7). Therefore, we use the notation 
F*(i ,  rid), ff*(i, nd) to indicate the dependency on the iteration steps i and on nd. 
S(i, nd) denotes S after executing the i-th loop (8.4), whereas A(i, nd) denotes 
A, the list of calculated approximations after executing loop (8.4). Moreover, let 
L(Y, nd) denote the list of pairs (Z k, F(Zk) )  generated by calling SUBDIVISION 
for a pair (Y, F (Y)) ,  and define 

U(i, nd) := [.J{ YJ I (YJ,F__(YJ)) �9 S(i, nd) } 
V(Y, nd) := (.J{ Zk I (Zk, F(Zk)) E L(Y, nd) }. 

(ll.1) 
(11.2) 

The following convergence results hold for all acceleration parameters a,/3, % 
> 0. To show the asymptotic convergence behaviour, we define nit := oo and 

omit the termination criterion (step (8.11) in MINIMIZATION) by setting E :--- 0. 
Hence, we do not mention this parameters in the following theorems. Our first 
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theorem gives the convergence behaviour of SUBDIVISION in dependence of 
nd E IN. 

THEOREM 1. Let Y C_ X be a box, if* >_ f*, and p ' { 1 , . . . , n }  -+ { 1 , . . . , n }  
be a permutation. Then SUBDIVISION applied to Y satisfies the following condi- 
tions: 

1. Y c3 X* C_ V(Y, nd). 
2. w(Z  k) = w ( Y ) / 2  nd for all Z k with (Z k, F__(Zk)) E L(Y, nd). 
3. If  the inclusion function F has the property that for each x E X and for each 

sequence Z ~ --+ x, Z k C X,  it follows that 

F__(Z k) --+ : (x ) ,  (12) 

and i f Y  M X* # 0 then 

Min{F__(Zk) I (Zk, F__(Zk)) E L(Y, nd) } --+ f* as nd --+ c~. (13) 

Proof 
1. In SUBDIVISION pairs (]I, F___(Y)) are deleted only in three cases (9.7), 

(9.13), and (9.15), where F(Y)  and F___(YJ),j = l, 2 are greater then if*. Hence, 
only pairs (YJ, F___(YJ)) with X* N YJ = 0 are lost. 

2. By (9.15) we see that pairs are only entered in list L = L(Y, rid) if k = 
kmax := n.  nd. Because p is a permutation each of the n coordinates of the starting 
box Y is bisected nd times, proving our second statement. 

3. Because of 1. and Y N X* # 0 it follows that 

Min{ F__(Zk) I (Zk,E_(Zk)) e n(Y, nd) } < f* (14) 

for each nd E IN. Assume that (13) is not valid. Then it exists e > 0 such that for 
all nd E IN 

Min{ F(Zk)  I (Z~,F(Zk))  E L(Y, nd) } < f * - e .  (15) 

Let Z(nd) denote the box with the lower bound E_(Z(nd)) which is equal to the left 
handside of inequality (14) for each nd E IN. Because X is bounded, the sequence 
(Z(nd))ndElN is bounded. Let z* be an accumulation point of this sequence. Let 

(Z k (rid))kEl'q be a convergent subsequence. Then Z k (nd) --+ z* as k -+ oo and by 

(12) F__(Zk(nd)) -+ f(z*) <_ f* -- r thereby contradicting the assumption that f* 
is the global minimum value. �9 

Especially, Theorem 1 shows that in SUBDIVISION no global minimum points are 
lost and convergence of the lower bounds to f* is assured. Condition (12) is very 
natural and in many cases computing inclusion functions satisfying property (12) 
causes no problems even, if f is not explicitly given. For example, in Section 5 
some eigenvalue problems are discussed where the inclusion function is given by 
a numerical algorithm. 
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Let us now turn to the behaviour of algorithm MINIMIZATION. Now we 
assume that nd E IN is fixed for all calls of SUBDIVISION. The following con- 
vergence results can easily be extended to the interactive case where nd might be 
changed in each iteration step. 

THEOREM 2. Algorithm MINIMIZATION satisfies the following conditions: 
1. X* C_ U(i, nd). 
2. f* E [F_.*(i, nd) ,F*( i ,  rid)], and list A(i, nd) contains an approximation 

such that f (5 )  E [F*(i, nd),ff*(i, rid)]. 
3. F* (i, nd) is monotonically increasing for increasing i. 
4. if* (i, rid) is monotonically decreasing for increasing i. 
5. I f  (Y,F__(Y)) E S(i, nd) then w(Y) = w (X) /2  ~di. 
Proof. 1. and 2. follows immediately by Theorem 1, (8.9), i.e. pairs are only 

deleted if their intersection with X* is empty and the other pairs are entered into 
list S, and noticing the update of if* in (10.7). By (8.10) it follows that F__* (i, nd) 
is monotonically increasing and by (10.7)ff*(i,  nd) is monotonically decreasing 
for increasing i. 5. follows by Theorem 1, using (8.5) through (8.9), and noticing 
that we bisect boxes in SUBDIVISION w.r.t, a permutation p. �9 

THEOREM 3. Let the inclusion function F satisfy property (12) and let nit  : =  co ,  

then the following holds for algorithm MINIMIZATION: 
l. lim ff*(i, nd)= lim F__*(i, nd) = f*. 

i ---'+ o o  i --"+ o o  

2. U(i + l, rid) C U(i, nd) and lim U(i, rid) = X*. 
i--+(x) 

0~ 

3. X* = [-I U(i, nd). 
i=1  

Proof. 1. By Theorem 1 it follows that the width of the boxes in list S 
decrease by factor 2 ~d in each iteration step i. Hence, (12) and Theorem 2 yields 
lim F__*(i, rid) = f*. Because a descent method in SEARCH is always called 
if condition (10.3a) is satisfied, we obtain with Theorem 2, lira ff*(i, nd) = 

i---+oo 

f*. 
2. U(i + 1, nd) C_ U(i, rid) and lim U(i, nd) C_ X* are trivial consequences 

of our method (notice that no pairs are deleted that contain a global minimum 
point). If .~ E lim U(i, nd) then there is a sequence Yi C U(i, rid), i E IN, 

containing ~ as an accumulation point. By Theorem 1 w ( Y  ~) -+ 0 with i --+ c~. 
By property (12) F ( Y  i) --+ f (~)  as y i  _+ 2. By 1. we obtain f(.~) = f*. Hence, 
~ E X * .  

3. is a trivial consequence of 2. �9 

Until now we have considered convergence properties for i --+ oo and na --+ 0o. 
The following theorem shows that after a finite number of iteration steps the global 
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minimum value f* and a global minimum point x* �9 X is calculated, provided a 
weak additional assumption is satisfied. 

ASSUMPTION (.).  We assume that f is a continuous function, and that the descent 
algorithm is locally convergent for all x* E X*. That is, there is a neighborhood 
N(x*) such that  the descent algorithm converges to x* for each starting point 
x E N(x*) calculating x* exactly if started in N(x*). 

This assumption is weak because almost all descent algorithms are locally conver- 
gent for a wide class of problems. Moreover, Newton-type methods show locally 
superlinear or quadratic convergence. Therefore these methods compute x* very 
fast and in principle arbitrarily accurate, provided the starting point is in N(x*). 
Hence, from a theoretical point of view, we can assume that the calculated approx- 
imation 5 is identical with the corresponding global minimum point, provided that 
the starting point is contained in N(x*). 

THEOREM 4. If the assumption (*) is satisfied, then there is an io E IN such that 
list A(io, nd) contains a global minimum point and if* (io, n d ) =  f*. 

Proof. Assume that A(i, nd) contains no global minimum point for all i E IN. 
Then if* (i0, nd) > f* for all i E IN. Let (x k) denote the finite or infinite sequence 
of points calculated by SEARCH being contained in A(i, na) as i --+ ~ .  We have 
to consider two cases: 

Case 1. There exists an e > 0 such that f (x  k) >_ f* + e for all k. 
Let x* E X*. Then by Theorem 2 (5.) there exists an il E IN and a box Yi~ 

with x* E Y~,  r f i  C_ N(x*), (V~',F(Vil)) �9 S( i l ,nd) .  
Because f is continuous Theorem 2 (5.) assures the existence of a box y~2, 

i2 _> il with x* �9 yi2, yi2 C_ Yfi, (Y~2,F(Vi2)) E S(j2, nd)and f (mid(Yi2))  < 
f * + e .  

Hence, condition (10.3a) is satisfied; by SEARCH, the descent algorithm is 
called in iteration step i0 := i2 + 1 with starting point mid(Y ~2) E N(x*), yielding 
x* E A(i0, nd). This is a contradiction to the assumption that A(i, rid) contains no 
global minimum point for all i E IN. 

Case 2. f (x  k) > f* for all k and f (x  k) --+ f* as k --+ cx~. 
The sequence (x k) is bounded by X. Hence, there exists an accumulation point 

.~ E X with x~J --~ ~:. Because f is continous, f(:~) = f* and $ E X*. This con- 
tradicts our assumption that the descent algorithm converges to :~ for all starting 
points in N(~).  �9 

Notice that in Theorem 4 we do not need assumptions about the quality of the 
inclusion function used. This is because the descent method is called in SEARCH 
using only function evaluations at real points (10.3a) and (10.3b). A similar theorem 
is not proved for the methods described in [10], [30]. As can be seen, demonstrated 
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by many test problems, our method typically computes an approximation of a 
global minimum point very rapidly. That is F*(i, nd) = f* for very small i, nd, 
whereas the lower bound F__* (i, nd) may be not close to f*. This is because in many 
situations the set of starting points that yield a global minimum point by the descent 
algorithm is large. Moreover, SUBDIVISION usually improves starting points for 
global minimizers. 

4. Numerical Results 

In this section we present the numerical results obtained by applying our method 
to a set of example functions. Examples 1-3 are non-differentiable problems with 
background in control theory and system analysis. The other test problems are 
well-known differentiable examples, where the set of functions given in examples 
6-9 are commonly used for the comparison of global optimization methods. 

The following additional abbreviations are used: 

n M  denotes the number of global minima found by the algorithm, where a 
dash means, that only a local minimum has been found, 

nL denotes the number of calls of the descent method (cf. (10.4)), 

ls 

nrf~ n i f  

t 

denotes the maximal length of the lists S, L, A, 

are the total number of real and inclusion function calls used, 

is the machine independent standard unit time. The unit for t is the time 
needed to perform 1000 calls of the Shekel Function No. 5 at (4,4,4,4). 
On a SUN SparcStation 1 one unit in standard time is 0.25 s. 

The algorithms described in Section 3 are implemented by using PROFIL/BIAS [ 16, 
17, 18], a C++ library for numerical purposes including interval arithmetic. This 
library is freely available for non-commerical use on most workstations and PCs. 

We emphasize that for all following test examples the computed approximations 
and f(~)  of the global minima agree with the global minimum x* and f* with 

in at least six decimal digits. In the following we display in our tables only F* 
rounded to six decimal digits, since if* also agrees with f(~-) and f* in at least six 
decimal digits. The bounds for X* are not given. In most cases these bounds are 
rough compared to if* - F*. 

In examples 1 and 4 to 22 the inclusion functions used are natural interval 
extensions (cf. [29]). We mention that in some cases better results can be obtained 
by using centered forms or interval slopes. 

EXAMPLE 1: The goal of the first example is to find for a system a lower-order 
model which in the minimax sense gives the best approximation to a system's 
impulse response. 
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The example has been taken from Charalambous and Bandler [4], where an approx- 
imation' for a fourth-order system using a second-order model is searched. The 
fourth-order system has the transfer function 

(s + 4) 
G(s) = (s + 1)(s 2 + 4 s +  8)(s + 5)" 

The second-order model's transfer function is 

H(s)  = x3 
(s + xi)  2 + 

where Xl, x2, x3 are the parameters of the model with Xl, x3 E [0, 1] and x2 E 
[0.1, 1]. 

The impulse responses for the system and the model are: 

3 t 1 -st 
s(t) = gale- + ~ e  - - -  

h(x,  t) = X3e-Xlt s inx2t .  
x2 

61-e-2t(3 sin2t + 11 cos2t) 

The impulse responses are compared at 51 equidistant time points t~, i = 0 , . . . ,  50 
in the time from 0 to 10 s. 

The goal is finding a set of the three parameters for the model such that the maximal 
error f ( x )  := max Is(t~) - h(x, ti)l is minimal. 

i 

The solution is f* = 0.00794706 at x~ = 0.684418, x~ = 0.954093, and x~ = 
0.122864. Plots of s(t) and h(x*, t) are shown in Figure 1, where the solid line is 
the impulse response of the model, and the dotted line is the system's response. 

The results obtained by using our method are displayed in the following table. 

nit nd F *  

2 0.00631710 
4 2 0.00756954 
2 3 0.00631710 
3 3 0.00776569 
4 3 0.00791567 
2 4 0.00756954 

F *  nM nL ls nrf nif 
0.00794706 1 2 283 236 1286 82.200 
0.00794706 1 2 283 264 3836 224.267 
0.00794706 1 2 283 293 72141410.800 
0.00794706 1 2 744 332 6046 332.800 
0.00794706 1 2 744 344 11052 611.533 
0.00794706 1 2 744 358 16232 899.333 
0.00794706 1 2 471 346 73481410.200 

EXAMPLE 2: In system analysis, a commonly occuring problem is to minimize 
the maximal real part of the eigenvalues of a matrix in order to get a maximal 
stable system. The systems discussed here consist of a matrix M ( x )  E IR "~• 
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with parameters x E ]R 2. If Ai(x) are the eigenvalues of M(x) and a(x)  := 
max ~R{Ai(x)}, then the goal is 

rnin a(x). 
xCX 

To get an inclusion function of a(x), the idea was to include eigenvalues by 
applying Gerschgofin's Theorem to V-1M(x)V where V is an approximation of 
the eigenvector matrix. We will omit a detailed description of how to compute this 
inclusion function but we mention that it is a variant of Lohner's method [20]. 

The first matrix we consider is 

= 

( dl (x l, x2) k sin X l k sin x2 
k sin2xl d2(xl,x2) kxl  
ksin2x2 k(Xl +X2) d3(xl,X2) 
kcos2x l  k(xl  - x2) k(Xl -~- X2) 2 
k cos 2x2 k x l x  2 k4x 2 

k COS X 1 k COS x 2 

kx2 kXlX2 

J d4(Xl ,  X2) k sin XlX 2 
k sin(x1 + x2) d5(xl, x2) 

with 

dl(xl ,  X2) = 17.5 - 2e -5~176 Xl -']- x2 
20 

d3(xl, xe) = 20 - 6cos27rxl 

d 4 ( x l , x 2 )  -~- 18 x4 + x4 1 12----~ + 2 cos 67rxlx2 
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- 1 7  .S, 

Fig. 2. 

ds(xl,  x2) = 20 - 6cos27rx2 

k = 10 -3 

Xl,X2 E [ - -5 ,5 ]  

As it can be seen in the plot of -a(x)  (we turned it upside down to let the global 
minimum be visible as global maximum), the function a(x) contains lots of local 
minima and maxima. The unique global minimum is 

f* = 15.9, x* = ( -3 .99997, -3 .99997)  

Applying our method, We obtain theresults 

nit rid.. E.* . i f* nM nL ls nff  nif t 
2 2 15.8686 17.1890 - 2 44 815 114 144.3 
2 4 15.8974 15.9000 1 1 1 133 33' 21.5 
3 4 15.8999 15.9000 1 1 1 134 49 28.5 

EXAMPLE 3: With the matrix 

and 

M(x) = 
d ks inx l  ksinx 2 ) 

k sin xl 15 sin 7r(x2 + 3.75) - 7 kx22/lO 
k sinx2 koc2~/10 15 sin 7r(x2 + 3.75) - 7 

d = x~/2 - 37e -8~ + sinTr(Sp - 0.25) + 2 
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~ o ~ ~ i ~ i ~ : ~ - ~  ~ ~ ~  / 

Fig. 3. 

p : (Xl "q- 4) 2 + (x2 + 4) 2 

k = 10 -3 

x l ,x2  ~ [ -5 ,  5] 

the plot of a (x)  is given in Figure 3, with the global minimum 

f* = -18.8718,  x* = ( -4 .04074 , -4 .04074)  

Applying our method, we obtain the following results 

n~ nd 
2 2 
2 4 
3 4 
4 4 

Eft__* F* 
-27 .3070 -18.8718 
-19.8697 -18.8718 
-18.9589 -18.8718 

nM nL Is nff nif t 
1 2 9 660 36 13.9 
1 1 1 294 33 l l .1 
1 1 4 295 75 26.3 
1 1 l l  296 143!41.9 -18.8852 -18.8718 

EXAMPLE 4: Photoelectron Spectroscopy Problem. This example is taken from 
Moore, Hansen, and Leclerc [24]" in the field of chemistry, a very common problem 
is to reconstruct a curve that is given by n points (x~, yi), i = 1 , . . . ,  n. Normally, 
the curve is a sum of peaks and the chemist desires to resolve the shape and the 
position of the individual peaks. In [24] the curve is given as a sum of two gaussian 
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peaks: 

xi = 4 + ( i + 1 ) / 1 0 ,  i = 1 , 2 , . . . , 8 1  

Yi = a l . e x p  ( - - ( ( x i -  Ul)/Sl) 2) +a2 . exp  ( - - ( ( x i -  u2)/s2) 2) 
al = 130.89 a2 = 52.6 
ul = 6.73 u2 = 9.342 
sl = 1.2 s2 = 0.97 

The goal is to recover the six parameters a 1, a2, u 1, It2, 81, 82 of  the curve function 

2 

p(x, al,a2, ul,u2, sl,s2) = E a j .  exp ( - ( ( x  - uj)/sj) 2) 
j = l  

such that the error 
81 

E (p(xi~a1~a2~ul'u2'81'82)-yi) 2 
i= l  

is minimized. 

The range of  the six parameters is defined as follows: 

ai E [130, 135] a2 E [50,55] 
Ul E [6,8] U2 E [8, 10] 

sl E [1,2] 82 E [0.5, 1] 

The method described in [24] uses interval derivatives in an extensive way and 
obtains the following guaranteed bounds for the global minimum value and the 
global minimum point: 

a1 = [130.889999624668920, 130.890000237423440] 
a2 =- [52.5999994426222910,52.6000003353821410] 
ul = [6.72999999580056230,6.73000000523584680] 
u2 = [9.34199999170696670, 9.34200000792551850] 
Sl = [1.19999999502502950, 1.20000000672384770] 
s2 = [0.96999998507893725,0.97000001469388031] 

f = [6 .3015390640. . . .  10 -13, 9 .9696829305 . . . .  10 -11] 

The number of  correct digits for the global minimum point is 7 . . .  9. The compu- 
tation time needed on a SUN SparcStation 1 is reported as 109240 s. 

If  we apply our method, we get approximations with 12 . . .  15 correct digits 

12 ~-- 

Ul = 
~2 = 

~2= 

130.8900000000426 
52.59999999998969 
6.730000000000008 
9.342000000000636 
1.199999999999803 
0.9700000000003587 
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and the following further results: 

nit r i d ,  ' F _ _ _ * .  F* 
1 1 0 2.72132.10 -z~ 

n M  n L I s n f f ~ n i f  t 

1 1 8 255 53 12.4 

This means, the computation time 

EXAMPLE 5: Griewank function [35] (n = 2, 10, 50). 
n n 

x i  
sG(x) = I I  cos + 1 

i = l  i = l  

- 1 0 0 < _ x l , x 2 <  100, d = 2 0 0 ,  

- 6 0 0 < x i < 6 0 0 ,  d = 4 0 0 0 ,  

f * = o ,  = (o , . . . ,o)  
For n = 2 we obtain 

n i t  n d  

2 2 
3 2 
4 2 
2 3 
3 3i 

4 31 
2 4 

the following results: 

0 0.781741 
0 9.99201.10 -16 
0 9.99201.10 -16 
0 9.99201.10 -16 
0 9.99201.10-16i 
0 19.99201.10 -16 
0 9.99201.10 -16 

is about 3.1 s on a SUN SparcStation 1. 

f o r n  : 2 

for n = 10, 50 

nM n L l s  nff nif t 
-- 1 8 123 65 0.467 
1 2 8 201 74 0.800 
1 2 8 202 82 0.867 
1 2 4 186 58 0.733 
1 2 4 187 70 0.800 
1 2 i 4  188 82 0.800 
1 2 4 154 78,0.733 

Using n = 10 and applying our method leads to 

n~ nd F* t7" _ nM nL Is nff nif t 
2 8 0 1.31006.10 -14 1 1 1 135 341 2.667 
2 10 l0 1.80300.10 -13 1 1 1 417 421 4.600 
2 12 ~0 3.25184.10 -13 1 1 1 400 501 5.133 

Only for a few real methods results are known for this function. In TSrn and 
Zilinskas [35] the results of two methods are given: 

]Method 
Griewank (1981) 
Snyman, Fatti (1987) 

Further for n to 50, we get 

n~ nd _.F* if* 
1 10 0 1.14087.10 -1~ 
2 10 0 1.14087.10 -12 
1~15 0 2.25375.10 -14 

nM nff t 
- -  6600 -- 
! 23399 90 

nM nL 'l s nff nif t 
1 ] 1 7644 l l01 110.333 
1 1 1 7645 2101 140.333 
1 1 1 743 1601 48.057 
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EXAMPLE 6: Branin function [35]. 

( )2 ( 1 )  
5.1 2 5 - 6  + 1 0  1 

f B R ( X )  = X2 -- " ~ 2 X l  q'- - -X l  
7r 

- 5  < xl < 10, 0 ~ X 2 <~ 15 

i-3.14159, 12.27500) 
f* = 0.397887, x* = 3.14159, 2.27500) 

9.42478, 2.47500) 

nit n d F* 
2 2 0.397887 
3 2 0.397887 
4 2 0.397887 
2 3 0.397887 
3 3 0.397887 
4 3 0.397887 
2 4 0.397887 

F* nM! nL Is nrf nif t 
0.397887 1 1 7 127 79 0.600 
0.397887 3 3! 9 271 139 1.267 
0.397887 3 3 9 276 201 1.467 
0.397887 3 3 10 2471143 1.200 
0.397887 3 3 10 251 231 1.400 
0.397887 3 3 10 254 309 1.600 

i 

0.397887 3 3 9 233 209! 1.267 

COS X 1 -'~ 10 

EXAMPLE 7: Goldstein-Price function 

f G p ( x )  = [1 + (~,  + x2 + 1) 2 

[35]. 

( 1 9 -  14Xl + 3x 2 - 14x2 + 6XlX2 + 3x22)] x 

[30 + (2xl - 3x2) 2 

( 1 8 -  32xl + 12x 2 + 4 8 x 2 -  36XlX2 + 27x22)] 

- 2  < Xl,X 2 ~ 2 

f*=3, X* ---- (0,--1) 

nit nd F* if* nM nL Is nrf nif t 
1 1 3.00000 3.00000 1 1 2 99 9 0.333 
2 2 3.00000 3.00000 1 1 2 121 39 0.533 
3 2 3.00000 3.00000 1 1 2 123 55 0.467 
4 2 3.00000 3.00000 1 1 3 124 7910.667 
2 3 3.00000 3.00000 1 1 2 126 59 0.600 
3 3 3.00000 3.00000 1 1 3 127 93 0.667 
4 3 3.00000 3.00000 1 1 3 128 125 0.667 
2 4 3.00000 3.00000 1 1 3 108 87 0.533 

EXAMPLE 8: Shekel functions [35]. 

m 1 
Ys.~(x) 2_, (x - a , ) ( .  - a~)r + 

i=1 

0 _ < x i <  10, i = 1 , . . . , 4  
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The coefficients are: 

i 
1 

2 
3 
4 
5 
6 
7 
8 

9 
10 

F o r m =  5 t h e m i n i m u m i s :  

f* = -10.1532, 

We obtain thefollowing results: 

n~ nd F*  

2 2 -10.2083 
3 2 -10.1622 
4 2 -10.1559 
2 3 -10.1622 
3 3 -10.1540 
4 3 -10.1534 
2 4 -10.1559 

ai ci 

(4.0, 4.0, 4.0, 4.0) 0.1 
(1.0, 1.0, 1.0, 1.0) 0.2 
(8.o, 8.o, 8.o, 8.o) o.2 
(6.0,6.0,6.0,6.0) 0.4 
(3.0, 7.0,3.0, 7.0) 0.4 
(2.0,9.0,2.0,9.0) 0.6 
(5.0,5.0,3.0,3.0) 0.3 
(8.0, 1.0, 8.0, 1.0) 0.7 
(6.0,2.0,6.0,2.0) 0.5 
(7.0, 3.6, 7.0, 3.6) 0.5 

x*=(4.00004,4.00013,4.00004,4.00013)  

i f* nM nL Is nff nif t 
-10.1532 1 1 1 165 33 0.733 
-10.1532 1 1 1 166 49 0.800 
-10.1532 1 1 1 167 65 0.867 
-10.1532 1 1 1 151 49 0.733 
-10.1532 1 1 1 152 85 0.867 
-10.1532 1 1 7 153 205 1.267 
-10.1532 1 1 1 97 65 0.600 

For m = 7 the 

f* = 

minimum is: 

-10.4029, x* = (4.00057,4.00069,3.99949,3.99961) 

Applying our method, we get: 

nit n d F *  if* nM nL Is nff  nif t 
-10.4029 1 1 1 193 37 0.867 
-10.4029 1 1 11194 53 1.000 
-10.4029 1 1 1 195 85 1.133 
-10.4029 1 1 1 138 53 0.733 
-10.4029 1 1 13 139 115 1.067 
-10.4029 1 1 70 142 691 3.933 
-10.4029 1 1 1 86 85 0.733 

2 2 -10.6818 
3 2 -10.4501 
4 2 -10.4144 
2 3 -10.4501 
3 3 -10.4100 
4 3 -10.4040 
2 4 -10.4144 

For m = 10 the minimum is: 

f* = -10.5364, x* = (4.00075,4.00059,3.99966, 3.99951) 
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Again applying our method, we get: 

nit nd 
2 2 
3 2 
4 2 
2! 3 
3 3 
4 3 
2 4 

E* F 
-10.8593 -10.5364 
-10.5918 -10.5364 
-10.5501 -10.5364 
-10.5918 -10.5364 
-10.5447 -10.5364 
-10.5376 -10.5364 
-10.5501 -10.5364 

nM nL ls nff nif  t 
1 1 1 171 39 0.933 
1 1 1 1721 55 1.067 
1 1 1 173 93 1.267 
1 1 1 144 55 0.800 
1 1 15 145 123 1.267 
1 1 92 148 803 5.667 
1 1 1 86 93 0.933 

EXAMPLE 9: Hartman functions (n = 3, 6) [35]. 

~- -- Ei=I Ci exp - j = l  ~ - p i j )2  

O <_ xi  <_ 1, i = l , . . . , n  

Choosing n = 3, the coefficients are: 

i (~ c~ 

1 (3.0, 10.0,30.0) 1.0 
2 (0.1,10.0,35.0) 1.2 
3 (3.0, 10.0,30.0) 3.0 
4 (0.1,10.0,35.0) 3.2 

and the global minimum is 

f* = -3.86278, 

Applying our 

n~ nd 
1 2 
2 2 
31 2 
4: 2 
2 3 
2 4 

Pi 
(0.36890, 0.11700, 0.26730) 
(0.46990, 0.43870, 0.74700) 
(0.10910, 0.87320, 0.55470) 
(0.03815, 0.57430, 0.88280) 

x* = (0.114614,0.555649,0.852547) 

method leadstothefol lowing results: 

F__* i f*  nM nL ls 
-5 .49740 -3 .08976 1 1 21 
-4 .32854 -3.86278 1 5 107 
-3.98711 -3.86278 1 5 867 
-3 .89500 

i-3.98711 
-3 .89500 

-3.86278 1 
-3.86278 1 
-3.86278 1 

nff nif 
117 67 
571 689 
594 5375 

5 7902 831 47571 
4 867 638 5368 
4 7815 702 47564 

1.000 
4.733 

23.067 
190.200 
23.600 

231.867 

Choosing n = 6, the coefficients are: 

i o~i 

1 (10.00, 3.00,17.00, 3.50, 1.70, 8.00) 
2 ( 0.05, 10.00, 17.00, 0.10, 8.00, 14.00) 
3 ( 3.00, 3.50, 1.70, 10.00, 17.00, 8.00) 
4 (17.00, 8.00, 0.05, 10.00, 0.10, 14.00) 

C4 
1.0 
1.2 
3.0 
3.2 
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Pi 
(0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886) 
(0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991) 
(0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.6650) 
(0.4047, 0.8828, 0.8732, 0.5743, 0.1091,0.0381) 

The global minimum is 

f* = -3.32237,  

x* = (0.201690,0.150011,0.476874,0.275332,0.311652,0.657300) 

If we apply our method, we get 

nit nd /7_* F* 
1 2 -4 .14692 -3.32237 
2 2 -3 .51182 -3.32237 

nM nL I s nff  n i f  t 
1 2 65 464 780 6.267 
1 2 685 479 6744 42.067 

EXAMPLE 10: Levy No. 3 [36] 

f~.hs4(x) = iCOS((/+ 1)xl + i) �9 j COS((j 4- 1)x2 4- j )  
i=1 

- 1 0 < x i <  10, i =  1,2 

f* = -176.542,  

( 4.97648, 
( 4.97648. 
( 4.97648, 
(-1.30671. 

x* = (-1.30671, 
(-1.30671. 
(-7.58989. 
(-7.58989. 
(-7.58989, 

4.85806) 
-1.42513) 
-7.70831) 

4.85806) 
-1.42513) 
-7.70831) 

4.85806) 
-1.42513) 
-7.70831) 

nit nd i' ~----* ' 
2 2 --215.521 
3 21 --208.402 
4 2 --191.294 
2 3i--208.402 
3 3 - -184 .481  
4 3]--177.638 
2 4 --191.294 

-176.542 
- 176.542 
- 176.542 
- 176. 542 
- 176.542 
- 176.542 
- 176.542 

nM nLi Is nff nif t 
1 1 136 l l l  459 2.733 
5 5 136 485 1195 8.733 
9 9 136 822 1521 12.400 
5 7 79 651 1345 9.733 
9 11 131 952 2029i15.533 
9 11 986 994 6827 71.800 
8 10 269 834 1658 13.333 
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EXAMPLE 11: Levy No. 5 [36] 

Y hsh(x) = i c o s ( ( / +  1)Xl + i) . j cos(( j  + 1)x2 + j )  
\ i=1 

+(Xl + 1.42513) 2 + (X2 -~- 0.80032) 2 

- 1 0 _ < x i <  10, i =  1,2 

f *  = -176.138,  x* = ( -1 .30685 , -1 .42485)  

nit ?~d 
2 2 
3 2 
4 2 
2 3 
3 3 
4 3 
2 4 

-217.902 -8 .4488 
-205.369 - 176.138 
- 189.796 - 176.138 
-205.369 - 176.138 
- 183.934 - 176.138 
- 177.200 - 176.138 
- 189.796 - 176.138 

nM nL I s nff nif t 
-- 1 250 133 507 3.467 
1 2 250 218 632 4.733 
1 2 250 220 666 4.933 
1 1 30 89 309 2.000 
1 1 30 91 383 2.467 
1 1 117 96 915 9.300 
1 2 252 199 664 5.067 

EXAMPLE 12: Levy No. 8-12 (n = 3, 4, 5, 8, 10) [36] 

n - l  
f l e v y l ( X )  = sin27ryl + Z (Yi - 1)2(1 + 10sin27ryi+l) 

i=1 

+ (yn- -  1) 2 

with Yi = 1 + ( x i  - 1)//4 

- 1 0 _ < x i < _  10, i = l , . . . , n  

f * = 0 ,  x* : ( 1 , . . . , 1 )  

For n = 3 the results are: 

nit [ n d  

2 2 
3 2 
4 2 

2 3 
3 3 
2 4 

F* F* 
0 8.38942'  l0  -3~ 
0 8 .38942.10  -3o 
0 8.38942. l0  -3~ 
0 1.49956. l0  -32 
0 1.49966' 10 -32 
0 3 .22519 .10  -31 

nM nL Is nff nif t 
1 1 1 106 25 0.533 
1 1 1 107 37 0.533 
1 1 1 108 49 0 . 6 0 0  

1 1 1 84 37 0.400 
1 1 1 85 55 0.467 
1 1 1 73 49 0.400 
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For n = 4 we applied our method with the following results: 

n i t  nd _b-'* 
i 2 2 0  
i 3 2 o  

4 2 0  
2 3 0  
3 3 0  

2 1 4 0  

5 .98650 .10  -31 
5 .98650 .10  -31 
5 .98650 .10  -31 
6 .66442 .10  -31 
6 .66442 .10  -31 
1 .42632.10 -30 

nM nL Is nff nif t 
1 1 1 114 33 0.467 
1 1 1 l l 5  49 0.600 
1 1 1 l l 6  65 0.733 
1 1 1 lO1 49 0.533 
1 1 l i102  73 0.733 
1 1 1 87 65 0.600 

Increasing n to 5 leads to: 

nit n d F_F__* 
2 2 0  
3120  
4 2 0  
2 3 0 
3 3 0 
2 4 0  

6 .54453 .10  - i s  
6 .54453 .10  -18 
6 .54453 .10  -18 
7 .58057 .10  -25 
7 .58057 .10  -25 
3 .52595 .10  -28 

n M  i n L  Is n f f  nif t 
1 1 1 156 41 0.800 
1 1 1 157 61 0.867 
1 1 1 158 81 1.000 
1 1 1 123 61 0.733 
1 1 1 124 91 0.867 
1 1 11118 81 0.800 

Further increasing n to 8 yields: 

nit n d F_* 
2 2 0 
3 2 0 
4 2 0  
2 3 0 
3 3 0 

2 i 4 0  

7 .25593 .10  -19 
7 .25593 .10  -19 
7 .25593 .10  -19 
9 .70333 .10  -21 
9 .70333 .10  -21 
1 .81866.10 -25 

nM nL Is nff nif t 
1 1 1 244 65 1.400 
1 1 1 245 97 1.800 
1 1 l j 246  129 2.000 
1 1 1 255 97 1.667 
1 1 1 256 145 2.000 
1 1 1:241 129 1.800 

With n = 10, the results are: 

nit nd F*  
2 2 0 
3 2 0 
4 2 0 
2 3 0 
3 3 0 
2 4 0 

3 .41336 .10  -16 
3.41336. 10 -16 

3.41336. 10 -16 

1.49337.10 -12 

1.49337.10  -12 
4 .93934 .10  -21 

nM nL Is nrf nif t 
1 1 1 379 81 2.200 
1 1 1 380 121 2.600 
1 1 1 381 161 2.933 
1 1 1 146 121 1.667 
1 l 1 147 181 2.133 
1 1 1 345 161 2.933 
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To show the behaviour for higher dimensions, we enlarge n to 50. This problem is 
not contained in the test set [36]. The results are: 

nit nd 
2 2 
3 2 
4 2 

2 3 
3 3 

4 3 
2 4 

f___* if* 
:0 1 .97959 .10  -13 
]0 1 .97959 .10  -13 
0 1 .97959 .10  -13 

0 1 .04201 .10  -12 
0 1 .04201 .10  -12 

0 1 .04201 .10  -12 

0 2 . 9 2 2 2 6 . 1 0  -18 

nM nL Is nrf nif t 
1 1 1 6075 401 103.700 
1 1 1 6076 601 116.300 
1 1 1 6077 801 128.500 
1 1 1 666 601 41.500 

1 1 1 667 901 58.700 

1 1 1 668 1201 76.100 

1 1 1 5565 801 120.300 

E X A M P L E  13: Levy No. 13-18 (n = 2, 3, 4, 5, 7) [36] 

flcvye(x) = sin 2 37rxl + 

+ 

n--1 
y~ (xi- 1) 2 (1 + sin 2 37rxi+l) 
i=1 

(Xn-1)2(l+sin227rXn) 

- 1 0 < x i < _  10, i = l , . . . ; n  f o r n < 4  

- 5  < z~ < 5, 

y* = 0, 

For n = 2 the results are: 

i = l , . . . , n  f o r n > 4  

m* = ( 1 , . . . , 1 )  

nit nd F__* if* 
2 2 0 0.439489 
3 2 ! 0 0.439489 
4 2 0 3.60551 �9 10 -30 

2 3 0 0.109874 
3 3 0 3.60551 �9 10 -3~ 
2 4 0 3 . 6 0 5 5 1 . 1 0  -3o 

nM nL Is nrf nif t 
-- 1 4 l l 3  19 0.467 
- 1 22 l l 7  85 0.733 
1 2 22 184 94 1.067 

- 1 8 133 47 0.533 
1 2 8 190 60 0.800 

1 2 3 154 36 0.667 

With n = 3 we yield: 

nit nd F* 
2 2 0 
3 2 0 
4 2 0 
2 3 0 
3 3 0 
2 4 0 

~5" nM I nL Is nrf nif t 
0.210238 -- 2 8 343 34 1.267 
0.210238 -- 2 51 351 256 2.133 
9 .9801.  10 -27 1 3 51 421 269 '2 .400  
0.109874 -- 1 20 159 101 0.800 
5 .79447.  l0 -29 1 2 20 205 120 1.133 
1.22359. l0  -26 1 2 8 203 58 0.867 
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Applying our method for n = 4, we get: 

nit  nd  E *  F *  

2 2 0 0.308268 
3 2 0 0.308268 
4 2 0 5.63553.10 -27 
2 3 0 0.109874 
3 3 0 1.48838.10 -15 
2 4 0 5.63855.10 -27 

nM nL I s nff  n i f  t 

- 2 16 396 56 1.600 
- 2 209 412 1030 5.667 
1 3 209 502 1047 6.267 

- 1 48i181 201 1.467 
1 2 48 249 226 1.867 
1 2 16 256 88 1.267 

Increasing n to 5, we yield: 

nit  n d F *  ~b "~* 

2 2 0 0.210238 
3 2 0 5.59851.10 -14 
4 2 0 5.59851.10 -14 
2 3 ]0 3.05564.10 -14 

3 0 3.05564.10 -14 
4 0 4.15295.10 -28 

I nM nL ls nff  n i f  t 

- 1 51 271 441 2.733 
1 2 51 364 46213.200 i 
1 2!51 365 482 3.333 
1 2 32 283 l l 4  1.533 
1 2 32 284 144 1.667 
1 1 1 120  8 1 ! 0 . 8 0 0  

Further increasing n to 7 leads to: 

nit  n d .. F___* 

2 2 0  
3 2 0 
4 2 0 
2 3 0 3]o 
2 0 

i f *  nM nL I s nff  n i f  t 

0.109874 - 1 8 395 197 2.467 
1.78379.10 -18 1 2 8 568 226 3.400 
1.78379.10 -18, 1 2 8 569 254 3.533 
1.30769.10 -17 1 2 99 588 310 3.933 
1.30769.10 -17 1 2 9 9  589 352 4.200 

13.26942.10 -23 1 1] 1 206 113 1.400 

As in the previous example, we enlarge the dimension to n = 50, which leads to: 

nit  nd  L, .F* .  

2 2 0  
3 2 0  
4 2 0  
2 3 0  
3 ~ 3 0  
4 3 0  
2 4 0  

0.109874 
9.35854.10 -15 
9.35854.10 -15 
7.83971.10 -15 
7.83971.10 -15 
7.83971.10 -15 
7.98569.10 -16 

nM nL Is nf f  n i f  

- 1 51 7133 7851 
1 2 51 7798 8052 
1 2 51 7799 8252 
1 2 51 9176 3052 
1 2 51 9177 3352 
1 2 51 9178 3652 
1 1 1 5786 801 

t 
356.000 
385.300 
390.800 
207.300 
219.000 
236.900 
105.100 

EXAMPLE 14: Schwefel No. 1.2 [36] 
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nit nd F *  
2 2 0 
3 2 0  
4 2 0 
2 3 0 
3 3 0 

- 5 _ < x i < 1 0 ,  i = 1 , . . . , 4  

f * = 0 ,  x * =  (1,1,1 ,1)  

if* nM nL Is nff 
1.69744-10 -52 1 
1.69744.10 -52 1 
1.69744-10 -s2 1 
6 .41699.10 - ~  1 
6 .41699.10 -47 1 

nif t 
1 28 128 391 1.267 
1 34 131 719 1.933 
1 34 134 899 2.267 
1 34 118 727 1.867 
1 34 120 1001 2.400 

EXAMPLE 15: Beale [36] 

fBE(X) = (1.5--X1 +XlX2) 2-4- (2 .25--Xl  + x , x 2 )  2 

+ ( 2 . 6 2 5 -  Xl + XlX3) 2 

n A n d  F*! 
2 2 0  
3 2 0  
4 2 0  
2 3 0  
3 3 0  
2 4 0  

-4 .5  <_ x~ _< 4.5, i = 1 , 2  

f* = 0 ,  x* = (3,0.5) 

3 .23393.10 -18 
2 .39976.10 -18 
2 .39976.10 -18 
4 .76286.10  -23 
4 .76286.10 -23 
4 .02320.10  -16 

nM nL ls nrf nif! t 
1 2 14 351 102 1.400 
2 3!17 467 253 2.133 
2 3 17 469i383 2.467 
1 2 20 260 266 1.400 
1 2 2 0  262 442 1.733 
1 2 26 419 422 2.200 

EXAMPLE 16: Schwefel No. 3.1 [36] 

] fs3.1(X) = Z Xl -- Xi + ( Z i -  1/2 
i=l 

- l O < x i < _ l O ,  i = 1 , . . . , 3  

f * = O ,  x * = ( 1 , 1 , 1 )  

nit V*d ----/7* F* 
2 2 0 5.96423 �9 10 -22 

3 2! 0 5 .96423.10 -22 
4 ~ ! 0  5.96423'10-22 
2 0 i9 .55520.10 -23 
3 3 0 9 .55520.10 -23 
2 4 0 1.04758. 10 -22 

nM nL Is nff nif t 
1 1 1 102 25 0.467 
1 1 1 103 37 0.457 
1 1 11104 49 0.457 
1 1 1 81 37 0.400 
1 1 1 82 55 0.457 
1 1 1 96 49 0.467 
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EXAMPLE 17: Booth [36] 

fBO(X) ---- (Xl -+- 2x2 - 7) 2 + (2Xl q-- x2 - 5) 2 

- l O < x i <  10, i = 1 , 2  

f * = O ,  x* = (1,3) 

nit nd F* if* nM 
2 2 0 1.57772. 10 -30 1 
3 2 0 1.57772. 10 -30 1 
4 2 0 1.57772. 10 -30 1 
2 3 0 0 1 
3 3 0 0 1 
2 4 0 0  1 

nL Is nff nif  t 
1 4 66 49 0.467 
1 4 68 69 0.400 
1 4 70 93 0.533 
1 2 77 71 0.467 
1 3 79 109 0.533 
1 3 94 99 0.600 

EXAMPLE 18: Kowalik [36] 

2 
11 ( b 2 + b i x 2 )  

fK(X') -~ Z ai -- x l b  2.q_bix3+x4 
i=l 

0 < _ x i < _ 0 . 4 2 ,  i =  

The coefficients are: 

f* = 3.07486.10 -4, 

5 
6 
7 
8 
9 

10 
11 

i ai 
1 0.1957 
2 0.1947 
3 0.1735 
4 0.1600 

0.0844 
0.0627 
0.0456 
0.0342 
0.0323 
0.0235 
0.0246 

nit n d F *  
2 1 
3 1 

, . . . , 4  

1 /~  
0.25 
0.50 
1.00 
2.00 
4.00 
6.00 
8.00 

10.00 
12.00 
14.00 
16.00 

x* = (0.192833,0.190836,0.123117,0.135766) 

-#* nM nLI ls nrf hie t 
0 3.07486.10 -4 1 11 79 213 315 2.600 
0 3.07486.10 -4 1 1 361 285 1499 10.067 

EXAMPLE 19: Powell [36] 

fpow(X) ---- (Xl -1- 10x2) 2 q- 5(x3 -- X4) 2 "~ (X2 -- 2x3) 4 q- 10(Xl -- x4) 4 
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- 4 _ < x i _ < 5 ,  i = 1 , . . . , 4  

/* = o, = ( o , o , o , o )  

The Hessian is singular at x*. 

nit nd F* 
2 2 0  
3 2 0  
4 2 0  
2 3 0  
3 3 0  
2 4 0  

5 .96299.10 -18 
5 .96299.10 -18 
5 .96299.10 -18 
4 .63594.10  -17 
4 .63594.10  -17 
3 .23044.10 -20 

nM] nL Is nff nil t 
1 1 8 481 185 1.933 
1 1 8 482 283 2.267 
1 ! 1 8 484 393 2.600 
1 1 4 537 285 2.533 
1 1 5 538 445 2.733 
1 1 7 570 403 2.867 

Enlarging the domain to 

- 2 . 1 0 6  _< xi <_ 4 .106,  i = 1 , . . . , 4  

leads to 

nit nd F* 
2 2 O  
3 2 0  
4 2 0  
2 3 0  
3 3 0  
2 4 0  

3 .55248.10 -2x 
3 .55248.10 -21 
3 .55248.10 -21 
2.28831.10-2~ 
2 .28831.10 -2o 
7 .62554.10  -18 

nM nL Is 

11 
1 
1 
1! 
1 
1 

nff nif t 
1! 5 5946 183 21.400 
1 5 5947 275 20.267 
1 5 5949 365 20.400 
1 5 3220 275 10.200 
1 5 3222 411 11.067 
II 4 5605 375 18.533 

EXAMPLE 20: Matyas [36] 

fiat(Z) = 0.26 (x 2 + x 2) - 0.48XlX2 

- 1 0 _ < x i <  10, i = 1 , 2  

f* = o, = (o,o) 

nit nd F* 
2 2 - 0 . O 6 0 8 5  
3 2 -0 .0025 
4 2 -0.000126953 
2 3 -0 .0025 
3 3 -6 .33179 �9  10 -5 
2 4 -0.000126953 

F ,  

9.76192 
9.76192 

,2.13253 
2.13253 
6.89361 

9 .76192.10 -~z 
.10-52 
. 10 -52 
.10-55 
�9 10-55 
.10-59 

nM nL Is nrf nif t 
1 1 7 91 87 0.600 
1 1 71 94 147 0.667 
1 1 7: 96 203 0.733 
1 1 6 113 147 0.667 
1 1 7 115 223 0.800 
1 1 6 80 203 0.733 
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EXAMPLE 21: Schwefel No. 3.2 

f s 3 . 2 ( X )  = 

[36] 

3 
i~=2[(xl-x2)2+(1-xi) z] 

nit  n d F__.* 

2 2 0 
3 2 0 
4 2 0 
2 3 0 
3 3 0 
2 4 0  

- 1 0  < 

f* = 

xi< 10, i = 1 , . . . , 3  

O, x* ---- (1, 1, 1) 

nM n L l s  nrf  
1.20614.10 -21 1 1 3 80 
1.20614. lO -21 1 1 4 82 
1.20614.10 -21 1 1 4 84 
1.68341. lO -19 1 1 3 95 
1.68341.10 -19 1 1 4 96 
4.29246.10 -18 1 1 4 89 

ni f  t 

59 0.467 
111 0.533 
163 0.667 
111 0.600 
189 0.667 
163 0.667 

EXAMPLE 22: Rosenbrock [36] 

fRB(X) = 100(x2 - x2) 2 + 

nit  nd  ,, F__* 

2 2 0  
3 2 0 
4 2 0 
2 3 0 
3 3 0 
2 4 0  

- 5  _< 

f *  = 0, X* : 

i f *  n M 

1.36492.10 -22 1 
1.36492.10 -22  1 
1 . 3 6 4 9 2 .  10-22 i 1 
1.14764 10-221 1 
1.14764. 10 .22 1 
2.29523. 10 -21 1 

(Xl --  1) 2 

xi <_5, i=1,2 
(1,1) 

nL Is 

1 4 101 
1 4 102 
1 4 104 
1 4 122 
1 4 124 
1 3  119 

nrf  n i f  t 

31 0.267 
55 0.333 
77 0.400 
57 0.400 
89 0.467 
83 0.400 

5. Conclusion 

In this paper we have presented a branch and bound algorithm for a global opti- 
mization problem with bound constraints. One of the most important aspects of 
this algorithm is the strategy which is used for incorporating local optimization 
algorithms. This is done by using inclusion functions for improving starting points, 
and by incorporating a special scheme for calling the local optimization algorithm. 
Numerical results for many well-known problems demonstrate that at the very 
beginning approximations of a global minimum point and the global minimum 
value are calculated, and that for most test problems only between 1 and 3 local 
searches are performed. The bounds for the global minimum value and the glob- 
al minimum points are proved to be correct; all sources of errors are taken into 
consideration. Moreover, our method requires no derivatives. 
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Examples  6 - 9  in Section 4 are the test problems proposed by  Dixon und Szeg6 
[6], [7] for the purpose of  comparison of  global optimization algorithms. In T 6 m  and 
Zilinskas [35], the following times (standard unit time) for other global optimization 

algorithms are given. 

Algorithm BR 

Parv87(P) 2.2 
Brem70 0.5 
Fagiuo78 5 
Price78 4 
T6rn78 4 
Boend80 1 
Boend82 1 
Timm84 0.25 
Roton87 1.6 
Zilin80a 27.5 
DeBia78a 14 
Snym87 
Parv87(S) 17 

GP 

4.1 
0.7 
0.7 
3 
4 

1.3 
1.5 

0.15 
2.1 
25.5 
15 
0.2 
5.4 

"Only a local minimum was found 

$5 

4.6 
1.5" 

7 
14 
10 
3 

3.5 
1 

3.4 "" 
122 
23 
1.1 

7.1 ' '  

Problem 

s7 I 
3.1 
1.5" 

9 
20 
13 
5 

4.5 
1-- 

3.5 ~ 
160 
20 
1.3 

9.8 "~ 

SlO I 

3.6 
2 
13 
20 
15 
8 
7 
2 

4.0 "~ 
170 
30 
2.0 
12 *~ 

.3 I 
1 

2* 
5 
8 
8 

2.5 
1.7 
0.5 
1.8 
99 
16 
0.6 
4 

H6 

1.9 
3 

100 
46 
16 
5 

4.3 
2 

2.8 
161 
21 
1.3 

14 ~- 

"*Global minimum not always found (several experiments) 

The  t imes for our method are: 

Algorithm BR GP 

Our Method 1.3 0.3 

Problem 

$5 I $7 I S10 H3 H6 

0.6 0.7 0.8 4.7 6.3 

where the following guaranteed bounds are calculated: 

Our Method BR 

T* 0.397887 
F* 0.397887 

I 

GP $5 

3 -10.1532 
3 -10.1559 

$7 SlO H3 H6 

-10.4049 
-10.4144 

-10.5364 
-10.5501 

-3.86278 
-4.32854 

-3.32237 
-4.14692 

This compar ison shows that our method works very well although guaranteed 

bounds are calculated additionally. 
We are currently investigating a modification of our algorithm for problems 

where derivatives are available. First results show that in many  cases this modi-  
fication leads to an acceleration, and very sharp bounds for the global m in imum 
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value and the global minimum points are calculated. In our future work, we intend 
to generalize this algorithm to constrained global optimization problems. 

Appendix. Symbol Index 

A 
c~,/3, ~/, 6 

d(X,r) 
Y 
F 
F* 

if* 
H('~) 
kmax 

L 
Is 
re(x) 
nd 

nit 

nL 

nM 

r~rf, n i f  

P 

S 

t 

w(x) 
Wrel(X)  

X k ~ x  
D(x) 

list of calculated approximations 

parameters of the procedure SEARCH 

distance of two boxes X, Y E I(]R n) 
objective function 

inclusion function of f 

guaranteed lower bound for the global minimum value 

guaranteed upper bound for the global minimum value 

expansion box around a local or global minimizer 

max. number of bisections 

list of subboxes (only used internally) 

maximal length of the lists S,L,A 

midpoint of X 

max. number of bisections for each direction 

total number of iterations 

number of calls of the descent method 

number of local or global minimizers found by our algorithm 

total number of real and inclusion function calls, respectively 

permutation 

list of subboxes with X* C_ U { Y I (Y, F(Y))  E S } 

machine independent standard unit time 

width of X 

relative width of X 

sequence (X k) converges to x 

interval hull of X 
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