
Journal of Global Optimization 7: 297-331, 1995. 297
(~) 1995 Kluwer Academic Publishers. Printed in the Netherlands.

A Branch and Bound Algorithm for Bound
Constrained Optimization Problems without
Derivatives

CHRISTIAN JANSSON and OLAF KNOPPEL
Technische Informatik III, TU Hamburg-Harburg, Eissendorferstrasse 38, 21071
Hamburg-Hamburg, Germany

(Received: 12 May 1993; accepted: 31 March 1995)

Abstract. In this paper, we give a new branch and bound algorithm for the global optimization
problem with bound constraints. The algorithm is based on the use of inclusion functions. The
bounds calculated for the global minimum value are proved to be correct, all rounding errors are
rigorously estimated. Our scheme attempts to exclude most '~uninteresting" parts of the search domain
and concentrates on its "promising" subsets. This is done as fast as possible (by involving local descent
methods), and uses little information as possible (no derivatives are required). Numerical results for
many well-known problems as well as some comparisons with other methods are given.

Mathematics Subject Classifications (1991) 49D37, 65G10.

Key words: Global optimization, interval arithmetic.

1. Introduction

Global optimization is calculating the global opt imum of an objective function over
a set of feasible points. In this paper we consider the following global optimization
problem

M i n { f (x) x E X } , X : = { x E I R ' Z [X < x < _ - X } , (1)

where f : X --+ IR, and the set o f feasible points X is a box or interval vector with
X < X , < is to be understood componentwise. The global minimum (if it exists)
is denoted by f* := Min{ f (x) I z E X }, and the set of global minimum points is
denoted by

x * := { ~* ~ x I f(~*) = y* }. (2)

During the last two decades several methods have been developed for solving
global optimization problems. Branch and bound schemes have been recognized
as deterministic methods that calculate bounds for f* and/or X*. Their main
components are (i) techniques for partitioning the set of feasible points X into
subregions Y, (ii) the calculation of bounds for the range of f on those subregions,
and (iii) techniques to discard some of the subregions.

298 CHRISTIAN JANSSON AND OLAF KNt]PPEL

One of the most important aspects of those methods is the calculation of bounds
for the range of functions. To our knowledge, Moore [21] was the first to discover
that interval arithmetic allows computing rigorous bounds for the range of a func-
tion over a box X, where the function is given by an arithmetical expression. Based
on this results a branch and bound strategy with some of Moore's principles was
given by Skelboe [34] and improved by Moore [22]. Important modifications of
Moore's method for solving the global optimization problem are due to Hansen [8],
[9], [10]. Especially, he gives substantial attention to problems where additionally
rigorous bounds for the range of the first and second derivative are available, and
proposed improved versions using interval Newton methods, monotonicity tests,
and nonconvexity tests. A detailed convergence analysis of those methods was
first given by Ratschek [28]. A special method for solving Minimax Problems by
using interval arithmetic can be found in [33]. Two excellent treatments of how to
apply interval methods to nonlinear systems and of global optimization problems
are given by Ratschek & Rokne [30] and Hansen [10]. These books contain many
references which are related to interval arithmetic, nonlinear systems, and global
optimization. For other branch and bound methods, not using interval arithmetic,
the reader is referred to [11], [27], [35].

The components (i) and (iii) of a branch and bound method have important
influence on the efficiency and the storage requirements. A common technique for
discarding subregions is the following: a subregion Y contains no global minimum
point and can be discarded, if a point z E X is known such that the calculated
lower bound of f on a subregion Y of X is greater than f (z). Hence, for discarding
subregions and accelerating branch and bound schemes it would be best if f* would
be known at the very beginning.

In contrast to other branch and bound techniques described in the literature
mentioned above, the goal of our paper is to consider a branch and bound algorithm
which incorporates local optimization algorithms for computing approximations of
f* and X* at the very beginning. There are two important difficulties by using local
optimization algorithms for global optimization problems. First, local optimization
algorithms rely heavily on the starting point, and the region of attraction for a global
minimum point or a stationary point may be very small. Secondly, it is difficult
when to call a local optimization algorithm in a global optimization method. Ideally,
the local optimization algorithm should only be called when an approximation of
a global minimum point will actually be computed.

In our method we use inclusion functions which give rigorous bounds for the
range of values of functions. One way to obtain inclusion functions is to use the
tools of interval arithmetic, where rounding errors can rigorously be estimated. For
example, functions which are given by arithmetic expressions, and which addition-
ally may involve standard functions, an inclusion function easily can be obtained
in the following way: The variables, real operations, and standard functions are
replaced by interval variables, real interval operations, and interval standard func-
tions, respectively. In the last two decades, methods for calculating inclusion func-

A BRANCH AND BOUND ALGORITHM 299

tions are given for many problems, like linear and nonlinear equations, eigenvalue
problems, differential equations, integral equations, etc. If the objective function
is implicitely defined by such a problem, we may calculate with those methods a
corresponding inclusion function. On the other hand, our method cannot be applied
to problems where bounds for the range of the objective function are not available;
for example, functions which are computed by complex routines that only calculate
function evaluations at trial points.

We assume that the reader is familiar with the elementary concepts of interval
arithmetic. These concepts and their applications are described in the monographs
Alefeld & Herzberger [1], Kulisch & Miranker [19], Moore[23], Neumaier [26],
and Ratschek & Rokne [29]. These books contain many examples.

In our scheme, we use inclusion functions for calculating bounds for the range
on subregions, and also for incorporating local optimization algorithms, In many
experiments we observed that usually inclusion functions overestimate the true
range of the objective function, but they have the following property: if lower
bounds of f on two subboxes with equal diameter are calculated, then in many
cases the subbox with the smaller lower bound contains smaller function values.
Our branch and bound scheme is motivated by this observation. This scheme
improves starting points for the local optimization algorithm and attempts to avoid
the difficulties mentioned above.

Our method calculates approximations and guaranteed bounds of the global
minimum value and the global minimum points. The bounds calculated for the
global minimum points are rough compared to the bounds for the global mini-
mum value. Neither derivatives of the objective function nor derivatives of the
corresponding inclusion function are required.

The paper is organized as follows. Section 2 describes our branch and bound
method for solving the bound constrained optimization problem. In Section 3 a
detailed convergence analysis of the method is given. Section 4 contains numerical
results of 22 test problems, and in Section 5 some conclusions are given. We
mention that our method is faster than many other well-known methods for the set
of test functions proposed by Dixon and Szeg6 [6] (cf. Section 5). Numerical results
for one-dimensional test problems of a one-dimensional version of the method
described can be found in Jansson [12], [13]; more results for other problems are
given in Jansson and Kntippel [14].

2. The Method

In this section we present the minimization method in detail. Roughly speaking, it
is a special branch and bound technique consisting of a repeated application of a
bisection strategy in connection with a descent algorithm. The method consists of
three algorithms. The first algorithm called "MINIMIZATION" implements a part
of our branching strategy by calling the second algorithm "SUBDIVISION". The

300 CHRISTIAN JANSSON AND OLAF KNUPPEL

latter determines a bisection process, discards subregions, improves starting points,
and calls the third algorithm "SEARCH", which involves the descent algorithm.

We use the following notations. The bounds X__, X of a box X := { x E IR ~ I
X < x < X } are called lower and upper bound of X. With I (X) and I(IR n) we
denote the set of all boxes contained in X and IR n, resp. The midpoint of a box X
is given by

re(X) := 0.5. (X + X) , (3)

the width of X is defined by ~

w(X) := X - X___, (4)

(with components and the relative width is the vector wrel(X) ZOrel (X i i= l

w(Xi) / Im(Xi) l if 0 ~ Xi
Wrel(Xi) := w(Xi) otherwise (5)

where Xi denotes the i-th component of X. The interval hull of a set Z c_ IR n is
defined by

u (Z) := ~') { Y e I(IR ~) I Z C_ Y }. (6)

The distance of two boxes X, Y E I(IR n) is defined by (cf. [30], page 78)

d(X, Y) := max{ do(X, Y) , d0(Y, X) } (7)

where do(x,Y) := minllx -YI[, do(X,Y) := max do(z, Y), and I1" II denotes
yEY xEX

some norm. A sequence of boxes (X k) with X k E I (~ ~) converges to x E X if
lim d(X k, x) = O. In this case we use the abbreviation X k ~ x.

For a function f : X -~ IR the range of f on a box Y C X is denoted
by R (f (Y)) := { f (y) I Y e Y}. A function F �9 I (X) ~ I(lR) is called an
inclusion function of f on X, if

R (f (Y)) C_ F (Y) = [F(Y) , f f (Y)] forall Y E I (Z) . (8)

For the remainder of the paper we assume that an inclusion function F o f f on X
is given, and nit, na E IN \ {0}.

The two parameters nit, nd of the method are responsible for the number of
iterations and the number of bisections in each iteration step, respectively.

During the initialization (8.1), (8.2), (8.3) of MINIMIZATION the guaranteed
lower and upper bounds F__.* and if* are set to - c ~ and c~. List S holds the original
box X in which we search for the global minimum, and F__.(X) := -c~ . List A will
contain the approximations to be calculated and is empty at the beginning.

The bounds F_*, if* and the lists S, A are global quantities w.r.t, all three
procedures.

A BRANCH AND BOUND ALGORITHM 301

By passing through steps (8.4) to (8.11) at most nit iterations are executed. In
each iteration step i = 1 , . . . , nit SUBDIVISION is applied to all pairs contained
in list S at the beginning of the iteration step. Later on, we will see that list S
maintains the property

x* c (_J { r l(r, F(Y)) E S }. (9)

Hence, in formula (8.10) F* is updated and satisfies F* < f*. Formula (8.11)
provides an additional termination criterion. The algorithm terminates if the lower
and upper bound of f* are close enough, or if nit iterations are executed.

procedure MINIMIZATION;
begin y1 : : X, F* := -oo , if* := oo, F__(Y 1) := F*; (8.1)

initialize list S := { (Y1, F__(Y1))}, (8.2)

list of boxes containing all global minimum points;
initialize list A := 0, (8.3)

list of approximations to be calculated;
for i = 1 , . . . , nit do (8.4)
begin

S' := S; (8.5)
S := O; (8.6)
for all pairs (YJ, F__(YJ)) E S' do (8.7)
begin

call SUBDIVISION for the pair (YJ,_F(YJ)); (8.8)
SUBDIVISION produces a list L that consists of pairs (Z, F (Z)) ;
append list L calculated by SUBDIVISION (8.9)
at the end of list S;

end;

:= Max{ - F__*,Min{F__(Y) I(Y,F__(Y)) E S }}; (8.10) __F*

if (if* - F*) < e then STOP (8.11)
end;

end;

The heart of our minimization method is SUBDIVISION (cf. (9.1) . . . (9.15)). It is
assumed that (i) a pair (II, F(Y)) with Y C_ X, (ii) a guaranteed upper bound if*
of f*, and (iii) a permutation vector p : {1 , . . . , n} --+ {1 , . . . , n} are given. The
permutation vector p determines in which direction the boxes are bisected. In all
examples discussed in Section 5 p is choosen such that w(Xp(i)) > w(Xp(j)) for
i < j , i.e., first the box is bisected normal to the direction with the largest width,
then normal to the direction with the second largest width and so on.

In (9.1) kmax determines the maximal number of bisections which are performed
in SUBDIVISION. It can be seen that the maximal length of list W equals krnax.

302 CHRISTIAN JANSSON AND OLAF KNUPPEL

The number k(Y) determines the next direction of bisecting (cf. (9.8), (9.9)). The
initialization k(Y) := 0 in (9.2) says that the starting box Y is bisected normal to
p(1), since in this case s := (k(Y) mod n) + 1 = 1. Hence, the starting box Y
will be bisected normal to the direction with largest width of Y. Then in (9.3) a
"working list" W containing the pair (Y, F__(Y)) together with k(Y) and list L := 0
are initialized.

Our scheme excludes most "uninteresting" parts of the search domain and
concentrates on its "promising" subsets, and this should be done as fast as possible.
Our experience is that if a box Y is bisected with Y = y1 tO y2 and w(Y 1) =
w(y2) , then in many cases the part yi with the smaller lower bound F__(Y i)
(i = 1, 2) will contain the global minimizer of f on Y. Passing through steps (9.4)
to (9.15) we see that the algorithms proceeds always bisecting with box Y~ with
the smaller lower bound (cf. (9.11), (9.12)), while it enters the box with the greater
lower bound at the end of the working list W (cf. (9.13)). Thus,]r bisections
are executed on the original box Y, and then SEARCH is called in (9.14). The
advantages of proceeding in this way are:

- The starting point of the descent method is improved by reducing the width
of Y with the above heuristic: choose always the box with the smaller lower
bound.

- The guaranteed upper bound if*, which excludes the uninteresting parts of Y
in (9.7), (9.13), and (9.15), is quickly updated in (10.7). Notice that in (9.13),
(9.15) boxes are no longer taken into consideration if ff_(YJ) > -if*.

After calling SEARCH, the remaining boxes on list W are bisected. Only
the boxes Y(J) which may contain global minimizers (i.e, F__(Y ~) < if*) are
entered in a "local solution" list L (cf. (9.15)). List L is given back to algorithm
MINIMIZATION in (8.9).

procedure SUBDIVISION;
Given a pair (Y, F(Y)) and a permutation p : {1, . . . , n} -+ {1 , . . . , n}.

begin
kmax :----- n �9 r id;

k(Y) := O;

initialize list W := { (Y, F__(Y), k(Y)) } and list L := 1~;

while W r 0 do
begin

remove last triple (Y, F__(Y), k(Y)) from W;
for k = (k(Y) + 1) , . . . , kma x do
begin

if F(Y) > if* then exit for loop
s := (k mod n) + l;
bisect Y normal to direction p(s) getting two boxes

(9.1)
(9.2)

(9.3)

(9.4)

(9.5)
(9.6)

(9.7)
(9.8)

A BRANCH AND BOUND ALGORITHM 303

y1, y2 with y1 U y2 ___ y ; (9.9)
calculate E_(y1), F(Y2); (9.10)
if F__(Y 1) > F (Y 2) then

exchange the indices of (Y1, F(YI)) , (y 2 , F (y 2)) ; (9.11)
g := y1; F (Y) := F (y I) ; (9.12)
if k < kmax and F__(Y 2) _< if* then

enter the triple (y2, F (y 2) , k) at the end of W; (9.13)
if k = kmax and L = • and F_(Y) _< if* then

call SEARCH for (Y, F (Y)) ; (9.14)
f o r j = 1 , 2 d o

if k = kmax and F_(YJ) <_ if* then
append (YJ, F__(YJ)) at the end of list L; (9.15)

end;
end;

end;

A key problem is deciding of when to call the descent algorithm. Obviously,
if each call of SUBDIVISION would imply a call of the descent algorithm the
computational costs may grow dramatically. Ideally, a descent method should be
called, only if a global minimum point can indeed be calculated. This is the task
of SEARCH. By (10.1), (10.2), we first calculate an approximation of f~ :=
f (mid(Y)) , and then call the descent algorithm in (10.4), if (10.3a) or (10.3b) is
satisfied.

The box H(.~) is computed in (10.8) by means of an expansion around a local
or global minimizer. Notice that for 8 := 0 the descent algorithm is called only
if (10.3a) is fulfilled; in this case the descent method will surely improve if*
by (10.7). In our experience, using only (10.3a) has the disadvantage that many
bisections have to be performed in situations where the first call of the descent
algorithm delivers only a local minimum. This is, because the next call of the
descent algorithm needs the midpoint of a box possessing a better value of the
objective function than the previously calculated local minimum. Therefore, for
the purpose of acceleration we additionally use condition (10.3b) with 8 > 0.
Notice that for boxes Y inside of the expansion boxes H(~) the descent algorithm
will only be called if condition (10.3a) is satisfied. The incorporation of expansion
boxes are necessary for our method; otherwise, by condition (10.3b) the descent
method would be called too many times, if the function f is very flat locally.

We emphasize that, in almost all of our test examples, the number of calls of
the descent algorithm is equal to the number of global minimum points or at most
threefold this number.

In (10.6), on a computer it is important to calculate the value ff(s using the
upper bound F of our inclusion function F with proper rounding. Then we know
undoubtedly that if(Y) is a guaranteed upper bound of f (~) and therefore we cannot
loose any global minimum points due to rounding errors. All other calculations in
SEARCH are executed on a computer by using floating-point arithmetic.

304 CHRISTIAN JANSSON AND OLAF KN(IPPEL

procedure SEARCH;
Given a pair (Y, F_(Y)) and a, 13, % 5 _> 0;
begin

xs := mid(Y);
fs := f(xs);
if fs < if* or
if Y N H(5) = 0 for each already calculated approximate

local or global minimum point stored in our
approximation list A and fs < if* + 5. IF*I then

begin
call a descent method with starting point xs
calculating an approximation 5;
if ~" ~ X then project 5 orthogonal onto the bound of X, i.e.

if ~i < Xi , then xi := X____~:
if ~'i > Xi , then ~i := X,:
if -~i E [X__ i, Xi], then ~'i is not changed.

/:=
if* := min{3~ff*};
H(.~) := ~" 4- a . Max{IS- xsI, ;~l~l,'y);
append the triple (.~, f , H(5)) at the end of list A;

end;
end;

(10.1)
(10.2)

(10.3a)

(10.3b)

(lO.4)

(lO.5)
(lO.6)
(lO.7)
(lO.8)
(lO.9)

REMARKS.
1. In SUBDIVISION, step (9.11) gives a rule which says that the algorithm

proceeds with the box possessing the smaller lower bound. In the rare case where
both bounds are equal the algorithm proceeds with the first box. This case can be
improved by inserting the following step after (9.10):

if F__(Y l) = F__(Y 2) then bisect Y normal to direction p(s) yielding two boxes
y I , y 2 with y1 U y2 = y such that w(Y l) = 0.49 �9 w(Y); then calculate
F (r l) , F__(Y2);

This rule serves to accelerate our method especially, if a global minimum is
close to or on the common boundary of y1 and y2.

2. Usually we start with a given box X. But we can also begin with a set of
boxes and/or a set of approximations and bounds F*, if*; we have only to change
the initialization (8.1), (8.2), (8.3) in MINIMIZATION. Moreover, the method can
be used in an interactive way. That is, if the precision is not good enough we can
successively increase i by applying (8.5) to (8.11) to the lists S, A, and the updated
bounds F_F*, if*. In Section 4, numerical results are given. These should be read in
the form that nit is successively increased with fixed nd.

Also by increasing i, the parameter nd might be changed in SUBDIVISION
guided by the computed results (for example the length of list S of the previous

A BRANCH AND BOUND ALGORITHM 305

iteration steps). For many problems values of nd between 2 and 4 are satisfactory.
Higher values of nd are suited, if the region of attraction is very small.

Similarily, the parameter a, fl, "7, 8 and e may be changed interactively. Thus,
we have a great flexibility in applying our method.

Nevertheless for our numerical experiments in Section 4 the same set of param-
eters has been choosen identical for all test problems, with values a := 0.2,
/3 := 0.1, ~/:= 10 -3, 8 :-- 0.2, e := 0. This heuristic parameters are not optimized
w.r.t, to the set of problems discussed here. For some problems we did obtain better
results by changing some of the parameters. The setting e := 0 disables the termi-
nation criterion (8.11) and, thus, allows us to show the behaviour of our method
for increasing parameters nit, rid.

3. Except for example 1, our implementation of the method uses the algorithm of
Brent [3](cf. Chapter 7) as the local optimization method. For the non-differentiable
test problems, special descent algorithms may give better results. In example 1 we
used an SQP method, because this problem can also be viewed as a differentiable
constrained optimization problem.

4. Step (9.7) in SUBDIVISION is our mechanism for deleting subboxes. If more
information about the problem is given, then additional criteria can be incorporat-
ed, for example, monotonicity or concavity tests. Furthermore, knowing that the
function f is concave on X permits us to discard boxes Y contained in the interior
of X because here X* is on the boundary of X.

3. Convergence

In this section we discuss convergence properties of our method. To do this we
need some additional notation. The calculated bounds F___*, if* depend mainly on
the parameters nit, nd E IN, which determine the computational costs. In each
iteration step i = 1 , . . . , nit (cf. (8.4)) of MINIMIZATION the lower bound F_if_* is
updated in (8.10) whereas if* is updated in (10.7). Therefore, we use the notation
F*(i , rid), ff*(i, nd) to indicate the dependency on the iteration steps i and on nd.
S(i, nd) denotes S after executing the i-th loop (8.4), whereas A(i, nd) denotes
A, the list of calculated approximations after executing loop (8.4). Moreover, let
L(Y, nd) denote the list of pairs (Z k, F(Zk)) generated by calling SUBDIVISION
for a pair (Y, F (Y)) , and define

U(i, nd) := [.J{ YJ I (YJ,F__(YJ)) �9 S(i, nd) }
V(Y, nd) := (.J{ Zk I (Zk, F(Zk)) E L(Y, nd) }.

(ll.1)
(11.2)

The following convergence results hold for all acceleration parameters a,/3, %
> 0. To show the asymptotic convergence behaviour, we define nit := oo and

omit the termination criterion (step (8.11) in MINIMIZATION) by setting E :--- 0.
Hence, we do not mention this parameters in the following theorems. Our first

306 CHRISTIAN JANSSON AND OLAF KNOPPEL

theorem gives the convergence behaviour of SUBDIVISION in dependence of
nd E IN.

THEOREM 1. Let Y C_ X be a box, if* >_ f*, and p ' { 1 , . . . , n } -+ { 1 , . . . , n }
be a permutation. Then SUBDIVISION applied to Y satisfies the following condi-
tions:

1. Y c3 X* C_ V(Y, nd).
2. w(Z k) = w (Y) / 2 nd for all Z k with (Z k, F__(Zk)) E L(Y, nd).
3. If the inclusion function F has the property that for each x E X and for each

sequence Z ~ --+ x, Z k C X, it follows that

F__(Z k) --+ : (x) , (12)

and i f Y M X* # 0 then

Min{F__(Zk) I (Zk, F__(Zk)) E L(Y, nd) } --+ f* as nd --+ c~. (13)

Proof
1. In SUBDIVISION pairs (]I, F___(Y)) are deleted only in three cases (9.7),

(9.13), and (9.15), where F(Y) and F___(YJ),j = l, 2 are greater then if*. Hence,
only pairs (YJ, F___(YJ)) with X* N YJ = 0 are lost.

2. By (9.15) we see that pairs are only entered in list L = L(Y, rid) if k =
kmax := n. nd. Because p is a permutation each of the n coordinates of the starting
box Y is bisected nd times, proving our second statement.

3. Because of 1. and Y N X* # 0 it follows that

Min{ F__(Zk) I (Zk,E_(Zk)) e n(Y, nd) } < f* (14)

for each nd E IN. Assume that (13) is not valid. Then it exists e > 0 such that for
all nd E IN

Min{ F(Zk) I (Z~,F(Zk)) E L(Y, nd) } < f * - e . (15)

Let Z(nd) denote the box with the lower bound E_(Z(nd)) which is equal to the left
handside of inequality (14) for each nd E IN. Because X is bounded, the sequence
(Z(nd))ndElN is bounded. Let z* be an accumulation point of this sequence. Let

(Z k (rid))kEl'q be a convergent subsequence. Then Z k (nd) --+ z* as k -+ oo and by

(12) F__(Zk(nd)) -+ f(z*) <_ f* -- r thereby contradicting the assumption that f*
is the global minimum value. �9

Especially, Theorem 1 shows that in SUBDIVISION no global minimum points are
lost and convergence of the lower bounds to f* is assured. Condition (12) is very
natural and in many cases computing inclusion functions satisfying property (12)
causes no problems even, if f is not explicitly given. For example, in Section 5
some eigenvalue problems are discussed where the inclusion function is given by
a numerical algorithm.

A BRANCH AND BOUND ALGORITHM 307

Let us now turn to the behaviour of algorithm MINIMIZATION. Now we
assume that nd E IN is fixed for all calls of SUBDIVISION. The following con-
vergence results can easily be extended to the interactive case where nd might be
changed in each iteration step.

THEOREM 2. Algorithm MINIMIZATION satisfies the following conditions:
1. X* C_ U(i, nd).
2. f* E [F_.*(i, nd) ,F*(i , rid)], and list A(i, nd) contains an approximation

such that f (5) E [F*(i, nd),ff*(i, rid)].
3. F* (i, nd) is monotonically increasing for increasing i.
4. if* (i, rid) is monotonically decreasing for increasing i.
5. I f (Y,F__(Y)) E S(i, nd) then w(Y) = w (X) /2 ~di.
Proof. 1. and 2. follows immediately by Theorem 1, (8.9), i.e. pairs are only

deleted if their intersection with X* is empty and the other pairs are entered into
list S, and noticing the update of if* in (10.7). By (8.10) it follows that F__* (i, nd)
is monotonically increasing and by (10.7)ff*(i, nd) is monotonically decreasing
for increasing i. 5. follows by Theorem 1, using (8.5) through (8.9), and noticing
that we bisect boxes in SUBDIVISION w.r.t, a permutation p. �9

THEOREM 3. Let the inclusion function F satisfy property (12) and let nit : = co ,

then the following holds for algorithm MINIMIZATION:
l. lim ff*(i, nd)= lim F__*(i, nd) = f*.

i ---'+ o o i --"+ o o

2. U(i + l, rid) C U(i, nd) and lim U(i, rid) = X*.
i--+(x)

0~

3. X* = [-I U(i, nd).
i=1

Proof. 1. By Theorem 1 it follows that the width of the boxes in list S
decrease by factor 2 ~d in each iteration step i. Hence, (12) and Theorem 2 yields
lim F__*(i, rid) = f*. Because a descent method in SEARCH is always called
if condition (10.3a) is satisfied, we obtain with Theorem 2, lira ff*(i, nd) =

i---+oo

f*.
2. U(i + 1, nd) C_ U(i, rid) and lim U(i, nd) C_ X* are trivial consequences

of our method (notice that no pairs are deleted that contain a global minimum
point). If .~ E lim U(i, nd) then there is a sequence Yi C U(i, rid), i E IN,

containing ~ as an accumulation point. By Theorem 1 w (Y ~) -+ 0 with i --+ c~.
By property (12) F (Y i) --+ f (~) as y i _+ 2. By 1. we obtain f(.~) = f*. Hence,
~ E X * .

3. is a trivial consequence of 2. �9

Until now we have considered convergence properties for i --+ oo and na --+ 0o.
The following theorem shows that after a finite number of iteration steps the global

308 CHRISTIAN JANSSON AND OLAF KNOPPEL

minimum value f* and a global minimum point x* �9 X is calculated, provided a
weak additional assumption is satisfied.

ASSUMPTION (.). We assume that f is a continuous function, and that the descent
algorithm is locally convergent for all x* E X*. That is, there is a neighborhood
N(x*) such that the descent algorithm converges to x* for each starting point
x E N(x*) calculating x* exactly if started in N(x*).

This assumption is weak because almost all descent algorithms are locally conver-
gent for a wide class of problems. Moreover, Newton-type methods show locally
superlinear or quadratic convergence. Therefore these methods compute x* very
fast and in principle arbitrarily accurate, provided the starting point is in N(x*).
Hence, from a theoretical point of view, we can assume that the calculated approx-
imation 5 is identical with the corresponding global minimum point, provided that
the starting point is contained in N(x*).

THEOREM 4. If the assumption (*) is satisfied, then there is an io E IN such that
list A(io, nd) contains a global minimum point and if* (io, n d) = f*.

Proof. Assume that A(i, nd) contains no global minimum point for all i E IN.
Then if* (i0, nd) > f* for all i E IN. Let (x k) denote the finite or infinite sequence
of points calculated by SEARCH being contained in A(i, na) as i --+ ~ . We have
to consider two cases:

Case 1. There exists an e > 0 such that f (x k) >_ f* + e for all k.
Let x* E X*. Then by Theorem 2 (5.) there exists an il E IN and a box Yi~

with x* E Y~, r f i C_ N(x*), (V~',F(Vil)) �9 S(i l ,nd) .
Because f is continuous Theorem 2 (5.) assures the existence of a box y~2,

i2 _> il with x* �9 yi2, yi2 C_ Yfi, (Y~2,F(Vi2)) E S(j2, nd)and f (mid(Yi2)) <
f * + e .

Hence, condition (10.3a) is satisfied; by SEARCH, the descent algorithm is
called in iteration step i0 := i2 + 1 with starting point mid(Y ~2) E N(x*), yielding
x* E A(i0, nd). This is a contradiction to the assumption that A(i, rid) contains no
global minimum point for all i E IN.

Case 2. f (x k) > f* for all k and f (x k) --+ f* as k --+ cx~.
The sequence (x k) is bounded by X. Hence, there exists an accumulation point

.~ E X with x~J --~ ~:. Because f is continous, f(:~) = f* and $ E X*. This con-
tradicts our assumption that the descent algorithm converges to :~ for all starting
points in N(~). �9

Notice that in Theorem 4 we do not need assumptions about the quality of the
inclusion function used. This is because the descent method is called in SEARCH
using only function evaluations at real points (10.3a) and (10.3b). A similar theorem
is not proved for the methods described in [10], [30]. As can be seen, demonstrated

A BRANCH AND BOUND ALGORITHM 309

by many test problems, our method typically computes an approximation of a
global minimum point very rapidly. That is F*(i, nd) = f* for very small i, nd,
whereas the lower bound F__* (i, nd) may be not close to f*. This is because in many
situations the set of starting points that yield a global minimum point by the descent
algorithm is large. Moreover, SUBDIVISION usually improves starting points for
global minimizers.

4. Numerical Results

In this section we present the numerical results obtained by applying our method
to a set of example functions. Examples 1-3 are non-differentiable problems with
background in control theory and system analysis. The other test problems are
well-known differentiable examples, where the set of functions given in examples
6-9 are commonly used for the comparison of global optimization methods.

The following additional abbreviations are used:

n M denotes the number of global minima found by the algorithm, where a
dash means, that only a local minimum has been found,

nL denotes the number of calls of the descent method (cf. (10.4)),

ls

nrf~ n i f

t

denotes the maximal length of the lists S, L, A,

are the total number of real and inclusion function calls used,

is the machine independent standard unit time. The unit for t is the time
needed to perform 1000 calls of the Shekel Function No. 5 at (4,4,4,4).
On a SUN SparcStation 1 one unit in standard time is 0.25 s.

The algorithms described in Section 3 are implemented by using PROFIL/BIAS [16,
17, 18], a C++ library for numerical purposes including interval arithmetic. This
library is freely available for non-commerical use on most workstations and PCs.

We emphasize that for all following test examples the computed approximations
and f(~) of the global minima agree with the global minimum x* and f* with

in at least six decimal digits. In the following we display in our tables only F*
rounded to six decimal digits, since if* also agrees with f(~-) and f* in at least six
decimal digits. The bounds for X* are not given. In most cases these bounds are
rough compared to if* - F*.

In examples 1 and 4 to 22 the inclusion functions used are natural interval
extensions (cf. [29]). We mention that in some cases better results can be obtained
by using centered forms or interval slopes.

EXAMPLE 1: The goal of the first example is to find for a system a lower-order
model which in the minimax sense gives the best approximation to a system's
impulse response.

310 CHRISTIAN JANSSON AND OLAF KN[IPPEL

The example has been taken from Charalambous and Bandler [4], where an approx-
imation' for a fourth-order system using a second-order model is searched. The
fourth-order system has the transfer function

(s + 4)
G(s) = (s + 1)(s 2 + 4 s + 8)(s + 5)"

The second-order model's transfer function is

H(s) = x3
(s + xi) 2 +

where Xl, x2, x3 are the parameters of the model with Xl, x3 E [0, 1] and x2 E
[0.1, 1].

The impulse responses for the system and the model are:

3 t 1 -st
s(t) = gale- + ~ e - - -

h(x, t) = X3e-Xlt s inx2t .
x2

61-e-2t(3 sin2t + 11 cos2t)

The impulse responses are compared at 51 equidistant time points t~, i = 0 , . . . , 50
in the time from 0 to 10 s.

The goal is finding a set of the three parameters for the model such that the maximal
error f (x) := max Is(t~) - h(x, ti)l is minimal.

i

The solution is f* = 0.00794706 at x~ = 0.684418, x~ = 0.954093, and x~ =
0.122864. Plots of s(t) and h(x*, t) are shown in Figure 1, where the solid line is
the impulse response of the model, and the dotted line is the system's response.

The results obtained by using our method are displayed in the following table.

nit nd F *

2 0.00631710
4 2 0.00756954
2 3 0.00631710
3 3 0.00776569
4 3 0.00791567
2 4 0.00756954

F * nM nL ls nrf nif
0.00794706 1 2 283 236 1286 82.200
0.00794706 1 2 283 264 3836 224.267
0.00794706 1 2 283 293 72141410.800
0.00794706 1 2 744 332 6046 332.800
0.00794706 1 2 744 344 11052 611.533
0.00794706 1 2 744 358 16232 899.333
0.00794706 1 2 471 346 73481410.200

EXAMPLE 2: In system analysis, a commonly occuring problem is to minimize
the maximal real part of the eigenvalues of a matrix in order to get a maximal
stable system. The systems discussed here consist of a matrix M (x) E IR "~•

A BRANCH AND BOUND ALGORITHM 311

Impulse response
0.07

0.06

0.05

"~ 0.04
o

�9 0.03

E

0.02

0.01

0

-0.010

Fig. 1.

, . " . .

i i I

2 4 6
t [sl

i

8 10

with parameters x E]R 2. If Ai(x) are the eigenvalues of M(x) and a(x) :=
max ~R{Ai(x)}, then the goal is

rnin a(x).
xCX

To get an inclusion function of a(x), the idea was to include eigenvalues by
applying Gerschgofin's Theorem to V-1M(x)V where V is an approximation of
the eigenvector matrix. We will omit a detailed description of how to compute this
inclusion function but we mention that it is a variant of Lohner's method [20].

The first matrix we consider is

=

(dl (x l, x2) k sin X l k sin x2
k sin2xl d2(xl,x2) kxl
ksin2x2 k(Xl +X2) d3(xl,X2)
kcos2x l k(xl - x2) k(Xl -~- X2) 2
k cos 2x2 k x l x 2 k4x 2

k COS X 1 k COS x 2

kx2 kXlX2

J d4(Xl , X2) k sin XlX 2
k sin(x1 + x2) d5(xl, x2)

with

dl(xl , X2) = 17.5 - 2e -5~176 Xl -']- x2
20

d3(xl, xe) = 20 - 6cos27rxl

d 4 (x l , x 2) -~- 18 x4 + x4 1 12----~ + 2 cos 67rxlx2

312 CHRISTIAN JANSSON AND OLAF KNUPPEL

- 1 7 .S,

Fig. 2.

ds(xl, x2) = 20 - 6cos27rx2

k = 10 -3

Xl,X2 E [- -5 ,5]

As it can be seen in the plot of -a(x) (we turned it upside down to let the global
minimum be visible as global maximum), the function a(x) contains lots of local
minima and maxima. The unique global minimum is

f* = 15.9, x* = (-3 .99997, -3 .99997)

Applying our method, We obtain theresults

nit rid.. E.* . i f* nM nL ls nff nif t
2 2 15.8686 17.1890 - 2 44 815 114 144.3
2 4 15.8974 15.9000 1 1 1 133 33' 21.5
3 4 15.8999 15.9000 1 1 1 134 49 28.5

EXAMPLE 3: With the matrix

and

M(x) =
d ks inx l ksinx 2)

k sin xl 15 sin 7r(x2 + 3.75) - 7 kx22/lO
k sinx2 koc2~/10 15 sin 7r(x2 + 3.75) - 7

d = x~/2 - 37e -8~ + sinTr(Sp - 0.25) + 2

A BRANCH AND BOUND ALGORITHM 313

~ o ~ ~ i ~ i ~ : ~ - ~ ~ ~ ~ /

Fig. 3.

p : (Xl "q- 4) 2 + (x2 + 4) 2

k = 10 -3

x l ,x2 ~ [-5 , 5]

the plot of a (x) is given in Figure 3, with the global minimum

f* = -18.8718, x* = (-4 .04074 , -4 .04074)

Applying our method, we obtain the following results

n~ nd
2 2
2 4
3 4
4 4

Eft__* F*
-27 .3070 -18.8718
-19.8697 -18.8718
-18.9589 -18.8718

nM nL Is nff nif t
1 2 9 660 36 13.9
1 1 1 294 33 l l .1
1 1 4 295 75 26.3
1 1 l l 296 143!41.9 -18.8852 -18.8718

EXAMPLE 4: Photoelectron Spectroscopy Problem. This example is taken from
Moore, Hansen, and Leclerc [24]" in the field of chemistry, a very common problem
is to reconstruct a curve that is given by n points (x~, yi), i = 1 , . . . , n. Normally,
the curve is a sum of peaks and the chemist desires to resolve the shape and the
position of the individual peaks. In [24] the curve is given as a sum of two gaussian

314 CHRISTIAN JANSSON AND OLAF KNOPPEL

peaks:

xi = 4 + (i + 1) / 1 0 , i = 1 , 2 , . . . , 8 1

Yi = a l . e x p (- - ((x i - Ul)/Sl) 2) +a2 . exp (- - ((x i - u2)/s2) 2)
al = 130.89 a2 = 52.6
ul = 6.73 u2 = 9.342
sl = 1.2 s2 = 0.97

The goal is to recover the six parameters a 1, a2, u 1, It2, 81, 82 of the curve function

2

p(x, al,a2, ul,u2, sl,s2) = E a j . exp (- ((x - uj)/sj) 2)
j = l

such that the error
81

E (p(xi~a1~a2~ul'u2'81'82)-yi) 2
i= l

is minimized.

The range of the six parameters is defined as follows:

ai E [130, 135] a2 E [50,55]
Ul E [6,8] U2 E [8, 10]

sl E [1,2] 82 E [0.5, 1]

The method described in [24] uses interval derivatives in an extensive way and
obtains the following guaranteed bounds for the global minimum value and the
global minimum point:

a1 = [130.889999624668920, 130.890000237423440]
a2 =- [52.5999994426222910,52.6000003353821410]
ul = [6.72999999580056230,6.73000000523584680]
u2 = [9.34199999170696670, 9.34200000792551850]
Sl = [1.19999999502502950, 1.20000000672384770]
s2 = [0.96999998507893725,0.97000001469388031]

f = [6 .3015390640. . . . 10 -13, 9 .9696829305 10 -11]

The number of correct digits for the global minimum point is 7 . . . 9. The compu-
tation time needed on a SUN SparcStation 1 is reported as 109240 s.

If we apply our method, we get approximations with 12 . . . 15 correct digits

12 ~--

Ul =
~2 =

~2=

130.8900000000426
52.59999999998969
6.730000000000008
9.342000000000636
1.199999999999803
0.9700000000003587

ABRANCHANDBOUNDALGORITHM 315

and the following further results:

nit r i d , ' F _ _ _ * . F*
1 1 0 2.72132.10 -z~

n M n L I s n f f ~ n i f t

1 1 8 255 53 12.4

This means, the computation time

EXAMPLE 5: Griewank function [35] (n = 2, 10, 50).
n n

x i
sG(x) = I I cos + 1

i = l i = l

- 1 0 0 < _ x l , x 2 < 100, d = 2 0 0 ,

- 6 0 0 < x i < 6 0 0 , d = 4 0 0 0 ,

f * = o , = (o , . . . ,o)
For n = 2 we obtain

n i t n d

2 2
3 2
4 2
2 3
3 3i

4 31
2 4

the following results:

0 0.781741
0 9.99201.10 -16
0 9.99201.10 -16
0 9.99201.10 -16
0 9.99201.10-16i
0 19.99201.10 -16
0 9.99201.10 -16

is about 3.1 s on a SUN SparcStation 1.

f o r n : 2

for n = 10, 50

nM n L l s nff nif t
-- 1 8 123 65 0.467
1 2 8 201 74 0.800
1 2 8 202 82 0.867
1 2 4 186 58 0.733
1 2 4 187 70 0.800
1 2 i 4 188 82 0.800
1 2 4 154 78,0.733

Using n = 10 and applying our method leads to

n~ nd F* t7" _ nM nL Is nff nif t
2 8 0 1.31006.10 -14 1 1 1 135 341 2.667
2 10 l0 1.80300.10 -13 1 1 1 417 421 4.600
2 12 ~0 3.25184.10 -13 1 1 1 400 501 5.133

Only for a few real methods results are known for this function. In TSrn and
Zilinskas [35] the results of two methods are given:

]Method
Griewank (1981)
Snyman, Fatti (1987)

Further for n to 50, we get

n~ nd _.F* if*
1 10 0 1.14087.10 -1~
2 10 0 1.14087.10 -12
1~15 0 2.25375.10 -14

nM nff t
- - 6600 --
! 23399 90

nM nL 'l s nff nif t
1] 1 7644 l l01 110.333
1 1 1 7645 2101 140.333
1 1 1 743 1601 48.057

316 CHRISTIAN JANSSON AND OLAF KNUPPEL

EXAMPLE 6: Branin function [35].

()2 (1)
5.1 2 5 - 6 + 1 0 1

f B R (X) = X2 -- " ~ 2 X l q'- - -X l
7r

- 5 < xl < 10, 0 ~ X 2 <~ 15

i-3.14159, 12.27500)
f* = 0.397887, x* = 3.14159, 2.27500)

9.42478, 2.47500)

nit n d F*
2 2 0.397887
3 2 0.397887
4 2 0.397887
2 3 0.397887
3 3 0.397887
4 3 0.397887
2 4 0.397887

F* nM! nL Is nrf nif t
0.397887 1 1 7 127 79 0.600
0.397887 3 3! 9 271 139 1.267
0.397887 3 3 9 276 201 1.467
0.397887 3 3 10 2471143 1.200
0.397887 3 3 10 251 231 1.400
0.397887 3 3 10 254 309 1.600

i

0.397887 3 3 9 233 209! 1.267

COS X 1 -'~ 10

EXAMPLE 7: Goldstein-Price function

f G p (x) = [1 + (~, + x2 + 1) 2

[35].

(1 9 - 14Xl + 3x 2 - 14x2 + 6XlX2 + 3x22)] x

[30 + (2xl - 3x2) 2

(1 8 - 32xl + 12x 2 + 4 8 x 2 - 36XlX2 + 27x22)]

- 2 < Xl,X 2 ~ 2

f*=3, X* ---- (0,--1)

nit nd F* if* nM nL Is nrf nif t
1 1 3.00000 3.00000 1 1 2 99 9 0.333
2 2 3.00000 3.00000 1 1 2 121 39 0.533
3 2 3.00000 3.00000 1 1 2 123 55 0.467
4 2 3.00000 3.00000 1 1 3 124 7910.667
2 3 3.00000 3.00000 1 1 2 126 59 0.600
3 3 3.00000 3.00000 1 1 3 127 93 0.667
4 3 3.00000 3.00000 1 1 3 128 125 0.667
2 4 3.00000 3.00000 1 1 3 108 87 0.533

EXAMPLE 8: Shekel functions [35].

m 1
Ys.~(x) 2_, (x - a ,) (. - a~)r +

i=1

0 _ < x i < 10, i = 1 , . . . , 4

A BRANCH AND BOUND ALGORITHM 317

The coefficients are:

i
1

2
3
4
5
6
7
8

9
10

F o r m = 5 t h e m i n i m u m i s :

f* = -10.1532,

We obtain thefollowing results:

n~ nd F*

2 2 -10.2083
3 2 -10.1622
4 2 -10.1559
2 3 -10.1622
3 3 -10.1540
4 3 -10.1534
2 4 -10.1559

ai ci

(4.0, 4.0, 4.0, 4.0) 0.1
(1.0, 1.0, 1.0, 1.0) 0.2
(8.o, 8.o, 8.o, 8.o) o.2
(6.0,6.0,6.0,6.0) 0.4
(3.0, 7.0,3.0, 7.0) 0.4
(2.0,9.0,2.0,9.0) 0.6
(5.0,5.0,3.0,3.0) 0.3
(8.0, 1.0, 8.0, 1.0) 0.7
(6.0,2.0,6.0,2.0) 0.5
(7.0, 3.6, 7.0, 3.6) 0.5

x*=(4.00004,4.00013,4.00004,4.00013)

i f* nM nL Is nff nif t
-10.1532 1 1 1 165 33 0.733
-10.1532 1 1 1 166 49 0.800
-10.1532 1 1 1 167 65 0.867
-10.1532 1 1 1 151 49 0.733
-10.1532 1 1 1 152 85 0.867
-10.1532 1 1 7 153 205 1.267
-10.1532 1 1 1 97 65 0.600

For m = 7 the

f* =

minimum is:

-10.4029, x* = (4.00057,4.00069,3.99949,3.99961)

Applying our method, we get:

nit n d F * if* nM nL Is nff nif t
-10.4029 1 1 1 193 37 0.867
-10.4029 1 1 11194 53 1.000
-10.4029 1 1 1 195 85 1.133
-10.4029 1 1 1 138 53 0.733
-10.4029 1 1 13 139 115 1.067
-10.4029 1 1 70 142 691 3.933
-10.4029 1 1 1 86 85 0.733

2 2 -10.6818
3 2 -10.4501
4 2 -10.4144
2 3 -10.4501
3 3 -10.4100
4 3 -10.4040
2 4 -10.4144

For m = 10 the minimum is:

f* = -10.5364, x* = (4.00075,4.00059,3.99966, 3.99951)

318 CHRISTIAN JANSSON AND OLAF KNUPPEL

Again applying our method, we get:

nit nd
2 2
3 2
4 2
2! 3
3 3
4 3
2 4

E* F
-10.8593 -10.5364
-10.5918 -10.5364
-10.5501 -10.5364
-10.5918 -10.5364
-10.5447 -10.5364
-10.5376 -10.5364
-10.5501 -10.5364

nM nL ls nff nif t
1 1 1 171 39 0.933
1 1 1 1721 55 1.067
1 1 1 173 93 1.267
1 1 1 144 55 0.800
1 1 15 145 123 1.267
1 1 92 148 803 5.667
1 1 1 86 93 0.933

EXAMPLE 9: Hartman functions (n = 3, 6) [35].

~- -- Ei=I Ci exp - j = l ~ - p i j)2

O <_ xi <_ 1, i = l , . . . , n

Choosing n = 3, the coefficients are:

i (~ c~

1 (3.0, 10.0,30.0) 1.0
2 (0.1,10.0,35.0) 1.2
3 (3.0, 10.0,30.0) 3.0
4 (0.1,10.0,35.0) 3.2

and the global minimum is

f* = -3.86278,

Applying our

n~ nd
1 2
2 2
31 2
4: 2
2 3
2 4

Pi
(0.36890, 0.11700, 0.26730)
(0.46990, 0.43870, 0.74700)
(0.10910, 0.87320, 0.55470)
(0.03815, 0.57430, 0.88280)

x* = (0.114614,0.555649,0.852547)

method leadstothefol lowing results:

F__* i f* nM nL ls
-5 .49740 -3 .08976 1 1 21
-4 .32854 -3.86278 1 5 107
-3.98711 -3.86278 1 5 867
-3 .89500

i-3.98711
-3 .89500

-3.86278 1
-3.86278 1
-3.86278 1

nff nif
117 67
571 689
594 5375

5 7902 831 47571
4 867 638 5368
4 7815 702 47564

1.000
4.733

23.067
190.200
23.600

231.867

Choosing n = 6, the coefficients are:

i o~i

1 (10.00, 3.00,17.00, 3.50, 1.70, 8.00)
2 (0.05, 10.00, 17.00, 0.10, 8.00, 14.00)
3 (3.00, 3.50, 1.70, 10.00, 17.00, 8.00)
4 (17.00, 8.00, 0.05, 10.00, 0.10, 14.00)

C4
1.0
1.2
3.0
3.2

A BRANCHAND BOUNDALGORITHM 3 1 9

Pi
(0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886)
(0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991)
(0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.6650)
(0.4047, 0.8828, 0.8732, 0.5743, 0.1091,0.0381)

The global minimum is

f* = -3.32237,

x* = (0.201690,0.150011,0.476874,0.275332,0.311652,0.657300)

If we apply our method, we get

nit nd /7_* F*
1 2 -4 .14692 -3.32237
2 2 -3 .51182 -3.32237

nM nL I s nff n i f t
1 2 65 464 780 6.267
1 2 685 479 6744 42.067

EXAMPLE 10: Levy No. 3 [36]

f~.hs4(x) = iCOS((/+ 1)xl + i) �9 j COS((j 4- 1)x2 4- j)
i=1

- 1 0 < x i < 10, i = 1,2

f* = -176.542,

(4.97648,
(4.97648.
(4.97648,
(-1.30671.

x* = (-1.30671,
(-1.30671.
(-7.58989.
(-7.58989.
(-7.58989,

4.85806)
-1.42513)
-7.70831)

4.85806)
-1.42513)
-7.70831)

4.85806)
-1.42513)
-7.70831)

nit nd i' ~----* '
2 2 --215.521
3 21 --208.402
4 2 --191.294
2 3i--208.402
3 3 - -184 .481
4 3]--177.638
2 4 --191.294

-176.542
- 176.542
- 176.542
- 176. 542
- 176.542
- 176.542
- 176.542

nM nLi Is nff nif t
1 1 136 l l l 459 2.733
5 5 136 485 1195 8.733
9 9 136 822 1521 12.400
5 7 79 651 1345 9.733
9 11 131 952 2029i15.533
9 11 986 994 6827 71.800
8 10 269 834 1658 13.333

320 CHRISTIAN JANSSON AND OLAF KN~IPPEL

EXAMPLE 11: Levy No. 5 [36]

Y hsh(x) = i c o s ((/ + 1)Xl + i) . j cos((j + 1)x2 + j)
\ i=1

+(Xl + 1.42513) 2 + (X2 -~- 0.80032) 2

- 1 0 _ < x i < 10, i = 1,2

f * = -176.138, x* = (-1 .30685 , -1 .42485)

nit ?~d
2 2
3 2
4 2
2 3
3 3
4 3
2 4

-217.902 -8 .4488
-205.369 - 176.138
- 189.796 - 176.138
-205.369 - 176.138
- 183.934 - 176.138
- 177.200 - 176.138
- 189.796 - 176.138

nM nL I s nff nif t
-- 1 250 133 507 3.467
1 2 250 218 632 4.733
1 2 250 220 666 4.933
1 1 30 89 309 2.000
1 1 30 91 383 2.467
1 1 117 96 915 9.300
1 2 252 199 664 5.067

EXAMPLE 12: Levy No. 8-12 (n = 3, 4, 5, 8, 10) [36]

n - l
f l e v y l (X) = sin27ryl + Z (Yi - 1)2(1 + 10sin27ryi+l)

i=1

+ (yn- - 1) 2

with Yi = 1 + (x i - 1)//4

- 1 0 _ < x i < _ 10, i = l , . . . , n

f * = 0 , x* : (1 , . . . , 1)

For n = 3 the results are:

nit [n d

2 2
3 2
4 2

2 3
3 3
2 4

F* F*
0 8.38942' l0 -3~
0 8 .38942.10 -3o
0 8.38942. l0 -3~
0 1.49956. l0 -32
0 1.49966' 10 -32
0 3 .22519 .10 -31

nM nL Is nff nif t
1 1 1 106 25 0.533
1 1 1 107 37 0.533
1 1 1 108 49 0 . 6 0 0

1 1 1 84 37 0.400
1 1 1 85 55 0.467
1 1 1 73 49 0.400

ABRANCHANDBOUNDALGORITHM 321

For n = 4 we applied our method with the following results:

n i t nd _b-'*
i 2 2 0
i 3 2 o

4 2 0
2 3 0
3 3 0

2 1 4 0

5 .98650 .10 -31
5 .98650 .10 -31
5 .98650 .10 -31
6 .66442 .10 -31
6 .66442 .10 -31
1 .42632.10 -30

nM nL Is nff nif t
1 1 1 114 33 0.467
1 1 1 l l 5 49 0.600
1 1 1 l l 6 65 0.733
1 1 1 lO1 49 0.533
1 1 l i102 73 0.733
1 1 1 87 65 0.600

Increasing n to 5 leads to:

nit n d F_F__*
2 2 0
3120
4 2 0
2 3 0
3 3 0
2 4 0

6 .54453 .10 - i s
6 .54453 .10 -18
6 .54453 .10 -18
7 .58057 .10 -25
7 .58057 .10 -25
3 .52595 .10 -28

n M i n L Is n f f nif t
1 1 1 156 41 0.800
1 1 1 157 61 0.867
1 1 1 158 81 1.000
1 1 1 123 61 0.733
1 1 1 124 91 0.867
1 1 11118 81 0.800

Further increasing n to 8 yields:

nit n d F_*
2 2 0
3 2 0
4 2 0
2 3 0
3 3 0

2 i 4 0

7 .25593 .10 -19
7 .25593 .10 -19
7 .25593 .10 -19
9 .70333 .10 -21
9 .70333 .10 -21
1 .81866.10 -25

nM nL Is nff nif t
1 1 1 244 65 1.400
1 1 1 245 97 1.800
1 1 l j 246 129 2.000
1 1 1 255 97 1.667
1 1 1 256 145 2.000
1 1 1:241 129 1.800

With n = 10, the results are:

nit nd F*
2 2 0
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

3 .41336 .10 -16
3.41336. 10 -16

3.41336. 10 -16

1.49337.10 -12

1.49337.10 -12
4 .93934 .10 -21

nM nL Is nrf nif t
1 1 1 379 81 2.200
1 1 1 380 121 2.600
1 1 1 381 161 2.933
1 1 1 146 121 1.667
1 l 1 147 181 2.133
1 1 1 345 161 2.933

322 CHRISTIAN JANSSON AND OLAF KNOPPEL

To show the behaviour for higher dimensions, we enlarge n to 50. This problem is
not contained in the test set [36]. The results are:

nit nd
2 2
3 2
4 2

2 3
3 3

4 3
2 4

f___* if*
:0 1 .97959 .10 -13
]0 1 .97959 .10 -13
0 1 .97959 .10 -13

0 1 .04201 .10 -12
0 1 .04201 .10 -12

0 1 .04201 .10 -12

0 2 . 9 2 2 2 6 . 1 0 -18

nM nL Is nrf nif t
1 1 1 6075 401 103.700
1 1 1 6076 601 116.300
1 1 1 6077 801 128.500
1 1 1 666 601 41.500

1 1 1 667 901 58.700

1 1 1 668 1201 76.100

1 1 1 5565 801 120.300

E X A M P L E 13: Levy No. 13-18 (n = 2, 3, 4, 5, 7) [36]

flcvye(x) = sin 2 37rxl +

+

n--1
y~ (xi- 1) 2 (1 + sin 2 37rxi+l)
i=1

(Xn-1)2(l+sin227rXn)

- 1 0 < x i < _ 10, i = l , . . . ; n f o r n < 4

- 5 < z~ < 5,

y* = 0,

For n = 2 the results are:

i = l , . . . , n f o r n > 4

m* = (1 , . . . , 1)

nit nd F__* if*
2 2 0 0.439489
3 2 ! 0 0.439489
4 2 0 3.60551 �9 10 -30

2 3 0 0.109874
3 3 0 3.60551 �9 10 -3~
2 4 0 3 . 6 0 5 5 1 . 1 0 -3o

nM nL Is nrf nif t
-- 1 4 l l 3 19 0.467
- 1 22 l l 7 85 0.733
1 2 22 184 94 1.067

- 1 8 133 47 0.533
1 2 8 190 60 0.800

1 2 3 154 36 0.667

With n = 3 we yield:

nit nd F*
2 2 0
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

~5" nM I nL Is nrf nif t
0.210238 -- 2 8 343 34 1.267
0.210238 -- 2 51 351 256 2.133
9 .9801. 10 -27 1 3 51 421 269 '2 .400
0.109874 -- 1 20 159 101 0.800
5 .79447. l0 -29 1 2 20 205 120 1.133
1.22359. l0 -26 1 2 8 203 58 0.867

A BRANCHANDBOUND ALGORITHM 323

Applying our method for n = 4, we get:

nit nd E * F *

2 2 0 0.308268
3 2 0 0.308268
4 2 0 5.63553.10 -27
2 3 0 0.109874
3 3 0 1.48838.10 -15
2 4 0 5.63855.10 -27

nM nL I s nff n i f t

- 2 16 396 56 1.600
- 2 209 412 1030 5.667
1 3 209 502 1047 6.267

- 1 48i181 201 1.467
1 2 48 249 226 1.867
1 2 16 256 88 1.267

Increasing n to 5, we yield:

nit n d F * ~b "~*

2 2 0 0.210238
3 2 0 5.59851.10 -14
4 2 0 5.59851.10 -14
2 3]0 3.05564.10 -14

3 0 3.05564.10 -14
4 0 4.15295.10 -28

I nM nL ls nff n i f t

- 1 51 271 441 2.733
1 2 51 364 46213.200 i
1 2!51 365 482 3.333
1 2 32 283 l l 4 1.533
1 2 32 284 144 1.667
1 1 1 120 8 1 ! 0 . 8 0 0

Further increasing n to 7 leads to:

nit n d .. F___*

2 2 0
3 2 0
4 2 0
2 3 0 3]o
2 0

i f * nM nL I s nff n i f t

0.109874 - 1 8 395 197 2.467
1.78379.10 -18 1 2 8 568 226 3.400
1.78379.10 -18, 1 2 8 569 254 3.533
1.30769.10 -17 1 2 99 588 310 3.933
1.30769.10 -17 1 2 9 9 589 352 4.200

13.26942.10 -23 1 1] 1 206 113 1.400

As in the previous example, we enlarge the dimension to n = 50, which leads to:

nit nd L, .F* .

2 2 0
3 2 0
4 2 0
2 3 0
3 ~ 3 0
4 3 0
2 4 0

0.109874
9.35854.10 -15
9.35854.10 -15
7.83971.10 -15
7.83971.10 -15
7.83971.10 -15
7.98569.10 -16

nM nL Is nf f n i f

- 1 51 7133 7851
1 2 51 7798 8052
1 2 51 7799 8252
1 2 51 9176 3052
1 2 51 9177 3352
1 2 51 9178 3652
1 1 1 5786 801

t
356.000
385.300
390.800
207.300
219.000
236.900
105.100

EXAMPLE 14: Schwefel No. 1.2 [36]

324 CHRISTIAN JANSSON AND OLAF KN[IPPEL

nit nd F *
2 2 0
3 2 0
4 2 0
2 3 0
3 3 0

- 5 _ < x i < 1 0 , i = 1 , . . . , 4

f * = 0 , x * = (1,1,1 ,1)

if* nM nL Is nff
1.69744-10 -52 1
1.69744.10 -52 1
1.69744-10 -s2 1
6 .41699.10 - ~ 1
6 .41699.10 -47 1

nif t
1 28 128 391 1.267
1 34 131 719 1.933
1 34 134 899 2.267
1 34 118 727 1.867
1 34 120 1001 2.400

EXAMPLE 15: Beale [36]

fBE(X) = (1.5--X1 +XlX2) 2-4- (2 .25--Xl + x , x 2) 2

+ (2 . 6 2 5 - Xl + XlX3) 2

n A n d F*!
2 2 0
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

-4 .5 <_ x~ _< 4.5, i = 1 , 2

f* = 0 , x* = (3,0.5)

3 .23393.10 -18
2 .39976.10 -18
2 .39976.10 -18
4 .76286.10 -23
4 .76286.10 -23
4 .02320.10 -16

nM nL ls nrf nif! t
1 2 14 351 102 1.400
2 3!17 467 253 2.133
2 3 17 469i383 2.467
1 2 20 260 266 1.400
1 2 2 0 262 442 1.733
1 2 26 419 422 2.200

EXAMPLE 16: Schwefel No. 3.1 [36]

] fs3.1(X) = Z Xl -- Xi + (Z i - 1/2
i=l

- l O < x i < _ l O , i = 1 , . . . , 3

f * = O , x * = (1 , 1 , 1)

nit V*d ----/7* F*
2 2 0 5.96423 �9 10 -22

3 2! 0 5 .96423.10 -22
4 ~ ! 0 5.96423'10-22
2 0 i9 .55520.10 -23
3 3 0 9 .55520.10 -23
2 4 0 1.04758. 10 -22

nM nL Is nff nif t
1 1 1 102 25 0.467
1 1 1 103 37 0.457
1 1 11104 49 0.457
1 1 1 81 37 0.400
1 1 1 82 55 0.457
1 1 1 96 49 0.467

A BRANCH AND BOUND ALGORITHM 325

EXAMPLE 17: Booth [36]

fBO(X) ---- (Xl -+- 2x2 - 7) 2 + (2Xl q-- x2 - 5) 2

- l O < x i < 10, i = 1 , 2

f * = O , x* = (1,3)

nit nd F* if* nM
2 2 0 1.57772. 10 -30 1
3 2 0 1.57772. 10 -30 1
4 2 0 1.57772. 10 -30 1
2 3 0 0 1
3 3 0 0 1
2 4 0 0 1

nL Is nff nif t
1 4 66 49 0.467
1 4 68 69 0.400
1 4 70 93 0.533
1 2 77 71 0.467
1 3 79 109 0.533
1 3 94 99 0.600

EXAMPLE 18: Kowalik [36]

2
11 (b 2 + b i x 2)

fK(X') -~ Z ai -- x l b 2.q_bix3+x4
i=l

0 < _ x i < _ 0 . 4 2 , i =

The coefficients are:

f* = 3.07486.10 -4,

5
6
7
8
9

10
11

i ai
1 0.1957
2 0.1947
3 0.1735
4 0.1600

0.0844
0.0627
0.0456
0.0342
0.0323
0.0235
0.0246

nit n d F *
2 1
3 1

, . . . , 4

1 /~
0.25
0.50
1.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

x* = (0.192833,0.190836,0.123117,0.135766)

-#* nM nLI ls nrf hie t
0 3.07486.10 -4 1 11 79 213 315 2.600
0 3.07486.10 -4 1 1 361 285 1499 10.067

EXAMPLE 19: Powell [36]

fpow(X) ---- (Xl -1- 10x2) 2 q- 5(x3 -- X4) 2 "~ (X2 -- 2x3) 4 q- 10(Xl -- x4) 4

326 CHRISTIAN JANSSON AND OLAF KNUPPEL

- 4 _ < x i _ < 5 , i = 1 , . . . , 4

/* = o, = (o , o , o , o)

The Hessian is singular at x*.

nit nd F*
2 2 0
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

5 .96299.10 -18
5 .96299.10 -18
5 .96299.10 -18
4 .63594.10 -17
4 .63594.10 -17
3 .23044.10 -20

nM] nL Is nff nil t
1 1 8 481 185 1.933
1 1 8 482 283 2.267
1 ! 1 8 484 393 2.600
1 1 4 537 285 2.533
1 1 5 538 445 2.733
1 1 7 570 403 2.867

Enlarging the domain to

- 2 . 1 0 6 _< xi <_ 4 .106, i = 1 , . . . , 4

leads to

nit nd F*
2 2 O
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

3 .55248.10 -2x
3 .55248.10 -21
3 .55248.10 -21
2.28831.10-2~
2 .28831.10 -2o
7 .62554.10 -18

nM nL Is

11
1
1
1!
1
1

nff nif t
1! 5 5946 183 21.400
1 5 5947 275 20.267
1 5 5949 365 20.400
1 5 3220 275 10.200
1 5 3222 411 11.067
II 4 5605 375 18.533

EXAMPLE 20: Matyas [36]

fiat(Z) = 0.26 (x 2 + x 2) - 0.48XlX2

- 1 0 _ < x i < 10, i = 1 , 2

f* = o, = (o,o)

nit nd F*
2 2 - 0 . O 6 0 8 5
3 2 -0 .0025
4 2 -0.000126953
2 3 -0 .0025
3 3 -6 .33179 �9 10 -5
2 4 -0.000126953

F ,

9.76192
9.76192

,2.13253
2.13253
6.89361

9 .76192.10 -~z
.10-52
. 10 -52
.10-55
�9 10-55
.10-59

nM nL Is nrf nif t
1 1 7 91 87 0.600
1 1 71 94 147 0.667
1 1 7: 96 203 0.733
1 1 6 113 147 0.667
1 1 7 115 223 0.800
1 1 6 80 203 0.733

ABRANCH ANDBOUNDALGORITHM 327

EXAMPLE 21: Schwefel No. 3.2

f s 3 . 2 (X) =

[36]

3
i~=2[(xl-x2)2+(1-xi) z]

nit n d F__.*

2 2 0
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

- 1 0 <

f* =

xi< 10, i = 1 , . . . , 3

O, x* ---- (1, 1, 1)

nM n L l s nrf
1.20614.10 -21 1 1 3 80
1.20614. lO -21 1 1 4 82
1.20614.10 -21 1 1 4 84
1.68341. lO -19 1 1 3 95
1.68341.10 -19 1 1 4 96
4.29246.10 -18 1 1 4 89

ni f t

59 0.467
111 0.533
163 0.667
111 0.600
189 0.667
163 0.667

EXAMPLE 22: Rosenbrock [36]

fRB(X) = 100(x2 - x2) 2 +

nit nd ,, F__*

2 2 0
3 2 0
4 2 0
2 3 0
3 3 0
2 4 0

- 5 _<

f * = 0, X* :

i f * n M

1.36492.10 -22 1
1.36492.10 -22 1
1 . 3 6 4 9 2 . 10-22 i 1
1.14764 10-221 1
1.14764. 10 .22 1
2.29523. 10 -21 1

(Xl -- 1) 2

xi <_5, i=1,2
(1,1)

nL Is

1 4 101
1 4 102
1 4 104
1 4 122
1 4 124
1 3 119

nrf n i f t

31 0.267
55 0.333
77 0.400
57 0.400
89 0.467
83 0.400

5. Conclusion

In this paper we have presented a branch and bound algorithm for a global opti-
mization problem with bound constraints. One of the most important aspects of
this algorithm is the strategy which is used for incorporating local optimization
algorithms. This is done by using inclusion functions for improving starting points,
and by incorporating a special scheme for calling the local optimization algorithm.
Numerical results for many well-known problems demonstrate that at the very
beginning approximations of a global minimum point and the global minimum
value are calculated, and that for most test problems only between 1 and 3 local
searches are performed. The bounds for the global minimum value and the glob-
al minimum points are proved to be correct; all sources of errors are taken into
consideration. Moreover, our method requires no derivatives.

328 CHRISTIAN JANSSON AND OLAF KNOPPEL

Examples 6 - 9 in Section 4 are the test problems proposed by Dixon und Szeg6
[6], [7] for the purpose of comparison of global optimization algorithms. In T 6 m and
Zilinskas [35], the following times (standard unit time) for other global optimization

algorithms are given.

Algorithm BR

Parv87(P) 2.2
Brem70 0.5
Fagiuo78 5
Price78 4
T6rn78 4
Boend80 1
Boend82 1
Timm84 0.25
Roton87 1.6
Zilin80a 27.5
DeBia78a 14
Snym87
Parv87(S) 17

GP

4.1
0.7
0.7
3
4

1.3
1.5

0.15
2.1
25.5
15
0.2
5.4

"Only a local minimum was found

$5

4.6
1.5"

7
14
10
3

3.5
1

3.4 ""
122
23
1.1

7.1 ' '

Problem

s7 I
3.1
1.5"

9
20
13
5

4.5
1--

3.5 ~
160
20
1.3

9.8 "~

SlO I

3.6
2
13
20
15
8
7
2

4.0 "~
170
30
2.0
12 *~

.3 I
1

2*
5
8
8

2.5
1.7
0.5
1.8
99
16
0.6
4

H6

1.9
3

100
46
16
5

4.3
2

2.8
161
21
1.3

14 ~-

"*Global minimum not always found (several experiments)

The t imes for our method are:

Algorithm BR GP

Our Method 1.3 0.3

Problem

$5 I $7 I S10 H3 H6

0.6 0.7 0.8 4.7 6.3

where the following guaranteed bounds are calculated:

Our Method BR

T* 0.397887
F* 0.397887

I

GP $5

3 -10.1532
3 -10.1559

$7 SlO H3 H6

-10.4049
-10.4144

-10.5364
-10.5501

-3.86278
-4.32854

-3.32237
-4.14692

This compar ison shows that our method works very well although guaranteed

bounds are calculated additionally.
We are currently investigating a modification of our algorithm for problems

where derivatives are available. First results show that in many cases this modi-
fication leads to an acceleration, and very sharp bounds for the global m in imum

A BRANCH AND BOUND ALGORITHM 329

value and the global minimum points are calculated. In our future work, we intend
to generalize this algorithm to constrained global optimization problems.

Appendix. Symbol Index

A
c~,/3, ~/, 6

d(X,r)
Y
F
F*

if*
H('~)
kmax

L
Is
re(x)
nd

nit

nL

nM

r~rf, n i f

P

S

t

w(x)
Wrel(X)

X k ~ x
D(x)

list of calculated approximations

parameters of the procedure SEARCH

distance of two boxes X, Y E I(]R n)
objective function

inclusion function of f

guaranteed lower bound for the global minimum value

guaranteed upper bound for the global minimum value

expansion box around a local or global minimizer

max. number of bisections

list of subboxes (only used internally)

maximal length of the lists S,L,A

midpoint of X

max. number of bisections for each direction

total number of iterations

number of calls of the descent method

number of local or global minimizers found by our algorithm

total number of real and inclusion function calls, respectively

permutation

list of subboxes with X* C_ U { Y I (Y, F(Y)) E S }

machine independent standard unit time

width of X

relative width of X

sequence (X k) converges to x

interval hull of X

References

1. Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations, Academic Press,
New York.

2. Boender, C., Kan, A. R., Timmer, G. and Stougie, L. (1982), A stochastic method for global
optimization. MathematicalProgramming, 22: 125-140.

3. Brent, R. E (1973), Algorithms for Minimization without Derivatives, Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey.

4. Charalambous, C. and Bandler, J. W. (1976), Non-linear minimax optimization as a sequence of
least pth optimization with finite values of p. J. Comput. Syst. Sci. 7(4): 377-391.

330 CHRISTIAN JANSSON AND OLAF KNOPPEL

5. Csendes, T. (1991), Test Results of Interval Methods for Global Optimization, 417-424, in E.
Kaucher, S. M. Markov, G. Mayer, Computer Arithmetic, Scientific Computation and Mathemat-
icql Modelling, IMACS.

6. Dixon, L. C. W. and Szego, G. E (eds.), (1975), Towards Global Optimization, North-Holland,
Amsterdam.

7. Dixon, L. C. W. and Szeg6, G. P. (eds.), (1978), Towards Global Optimization 2, North-Holland,
Amsterdam.

8. Hansen, E. R. (1979), Global Optimization Using lnterval Analysis - the One-Dimensional Case,
J. Optim. Theor. and Appl. 29, 331-344.

9. Hansen, E. R. (1980), Global Optimization Using lnterval Analysis - the Multidimensional Case,
Numerische Mathematik 34, 247-270.

10. Hansen, E. R. (1992), Global Optimization Using Interval Analysis, Marcel Dekker Inc., New
York.

11. Horst, R. and Tuy, H. (1990), Global Optimization, Springer-Verlag, Berlin.
12. Jansson, C. (1991), A Global Minimization Method: The One-Dimensional Case, Bericht 91.2

des Forschungsschwerpunktes Informations- und Kommunikationstechnik der TU Hamburg-
Harburg.

13. Jansson, C. (1992), A Global Optimization Method Using Interval Arithmetik. In L. Atanasso-
va and J. Herzberger, Computer Arithmetic and Enclosure Methods, 259-267, North-Holland,
Amsterdam.

14. Jansson, C. and Kntippel, O. (1992), A Global Minimization Method: The Multi-Dimensional
Case, Bericht 92.1 des Forschungsschwerpunktes Informations- und Kommunikationstechnik
der TU Hamburg-Harburg.

15. Kearfott, B. Du, K. (1993) The Cluster Problem in Global Optimization, Computing Suppl. 9,
117-127.

16. Kntippel, O. (1993), BIAS - - Basic Interval Arithmetic Subroutines, Bericht 93.3 des
Forschungsschwerpunktes Informations- und Kommunikationstechnik der TU Hamburg-
Harburg.

17. Kntippel, O. (1993), PROFIL - - Programmer's Runtime Optimized Fast Interval Library,
Bericht 93.4 des Forschungsschwerpunktes Informations- und Kommunikationstechnik der TU
Hamburg-Harburg.

18. Kntippel, O. (1994), PROFIL/BIAS - - A Fast Interval Library, Computing 53, 277-287.
19. Kulisch, U. and Miranker, W. L. (1981), Computer Arithmetic in Theory and Practice, Academic

Press, New York.
20. Lohner, R. (1989), Enclosing all eigenvalues of symmetric matrices. In Accurate Numerical

Algorithms, A Collection of Research Papers, volume 1 of Research Reports ESPRIT, Project
1072, DIAMOND, 87-103. Springer, Berlin.

21. Moore, R. E. (1966), IntervaIAnalysis, Prentice-Hall, Englewood Cliffs, N.J.
22. Moore, R. E. (1976) On Computing the Range of Values of a Rational Function of n Variables

over a Bounded Region, Computing 16, 1-15.
23. Moore, R. E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.
24. Moore, R., Hansen, E., and Leclerc, A. (1992), Rigorous Methods for Global Optimization.

In Recent Advances in Global Optimization, Princeton series in computer science, 321-342.
Princeton University Press, Princeton, New Jersey.

25. Murty, K. G. and Kabadi, S. N. (1987), Some NP-Complete Problems in Quadratic and Nonlinear
Programming, Mathematical Programming 39, 117-130.

26. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press.
27. Pardalos, P. M. and Rosen, J. B. (1987), Constrained Global Optimization: Algorithms and

Applications, Springer Lecture Notes Comp. Sci. 268, Berlin.
28. Ratschek, H. (1985), Inclusion Functions and Global Optimization, MathematicalProgramming

33, 300-317.
29. Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Ellis Horwood

Limited, Chichester.
30. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis

Horwood Limited, Chichester.

ABRANCHANDBOUNDALGORITHM 331

31. Ratz, D. (1992), An Inclusion Algorithm for Global Optimization in a Portable PASCAL-
XSC Implementation, in L. Atanassova and J. Herzberger, Computer Arithmetic and Enclosure
Methods, North-Holland, 329-339, Amsterdam.

32. Rump, S. M. (1983), Solving Algebraic Problems with High Accuracy, in U. W. Kulisch and
W.L. Miranker (eds), A New Approach to Scientific Computation, Academic Press, New York.

33. Shen, Zuhe, Neumaier, A., and Eiermann, M.C. (1990), Solving Minimax Problems by Interval
Methods, BIT 30, 742-751.

34. Skelboe, S. (1974), Computation of Rational Interval Functions, BIT 14, 87-95.
35. TOm, A. and Zilinskas, A. (1989), Global Optimization, Springer-Verlag, Berlin Heidelberg New

York.
36. Walster, G., Hansen, E., and Sengupta, S., (1985), Test results for a global optimization algorithm.

Numerical Optimization 1984, 272-287.
37. Wilkinson, J. H. (1971), Modem error analysis, SIAMRev. 13, 548-568.

